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Abstract

The Automatic Integration of Real-Time Embedded Software (AIRES) project aims to develop mod-
eling methodologies, analysis algorithms, and software development tools with engineering processes
built in, to support the integration of embedded software components subject to non-functional (e.g.,
timing and scheduling) constraints. In this project, we have proposed, implemented, and evaluated
a model-based approach for embedded software construction and analysis. Our approach is based on
meta-modeling and model-transformation techniques. The meta-modeling technique allows us to de-
fine the model constructs required to model and analyze the non-functional properties of embedded
software. Using the meta-model, one can specify not only software components and applications built
with the components, but also their execution environment or platform, non-functional constraints, and
performance-related parameters. Model transformation supports automatic evolution of design mod-
els from one phase to another within the development process. The AIRES project focused on the
transformation of a structural model to a runtime model. To ensure that the models are transformed
while meeting the timing and scheduling constraints, we have developed a set of algorithms, including
component allocation, task formation, assignment of timing attributes and scheduling policies, and tim-
ing and schedulability analysis. All of the thus-obtained components, called the AIRES toolkit, have
been implemented in the Generic Modeling Environment (GME), a Windows-based graphic modeling
environment designed by researchers at Vanderbilt University. The AIRES tool kit has been evaluated
in the form of an end-to-end integration tool-chain for automotive and avionics applications. Together
with other research groups that participated in the evaluation, the ATRES tool is shown to achieve a
2-10 x speedup in locating design errors and recommending solutions to fix them. The speedup also
comes from the automatic process and algorithms built into the tool which find optimal/suboptimal
solutions in a large design space.
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Chapter 1

Overview

The AIRES project research has been conducted under the auspice of the DARPA /IXO Model-Based
Integration of Embedded Software (MoBIES) Program. The goal of the MoBIES program is to develop
mathematical models and interface standards for the integration of physical descriptions of applica-
tion domains, high-level specifications of program functionality, and process models for software tools.
Using this technology, one can construct a domain- and application-specific embedded software design
frameworks with different tools. The tools can be developed using different modeling languages that are
specialized for different design concerns and different modeling aspects of the target embedded software.
Therefore, various cross-cutting issues in embedded software design and analysis, including real-time
scheduling, size/weight /power limitations, fault-tolerance, safety, and security, can be addressed by us-
ing the various tools in the integrated tool chain. Such customizable tool integration frameworks will
dramatically accelerate the embedded software development process, and yield correct and high-quality
code.

As a part of the MoBIES program and as a significant contribution to end-to-end tool chain integra-
tion, we have developed techniques and tool kits specifically to address the issues of software modeling,
design, and analysis related to timing performance and schedulability.

1.1 Motivations and Project Scope

Today’s embedded software design tends to synthesize existing software components and models for
fast and low-cost software development. In such a describe-and-synthesize development methodology,
the design process of embedded software selects the software models/components that can meet both
functional and non-functional constraints. Since embedded software typically runs on a resource-limited
platform, and is responsible for correct control of the external physical world, meeting non-functional
and functional constraints, such as timing, schedulability, power, and size, becomes a critical issue. In
view of the large and complex non-functional constraints in embedded systems, we focus on the design
and analysis issues associated only with timing and scheduability.

Embedded applications can be classified as computation-intensive or communication-intensive. A
computation-intensive embedded application determines the status of the external physical world and
makes control decisions based on complex computation and data processing. Examples of such appli-
cations include the mission control of weapon systems, automotive in-vehicle control, and machine-tool
control applications. A communication-intensive embedded application determines the system status
and generates control commands mainly based on collaboration among a large number of devices. Ex-
amples of this type of applications include sensor networks and home automation systems. The software
for computation-intensive embedded applications typically runs on a small number ((< 10%) of com-
putation devices. However, a large number of software components/algorithms run on each of these



devices. In contrast, the software for communication-intensive applications usually runs on a large
number (102 ~ 10*) of devices, each executing simple operations. The AIRES project aims to address
software-development issues for computation-intensive embedded applications.

To support fast, low-cost, and high quality software development for computation-intensive embedded
applications, we should address the following modeling and analysis problems.

Integrated performance modeling framework. Support for performance modeling with the func-
tional system modeling is essential for early design error detection and decision on design choices.
To this end, a performance modeling framework needs to be defined and associated with the func-
tional design framework, including modeling methods, performance parameters and metrics, and
interfaces with other models and analysis algorithms. The thus-defined performance modeling
framework should be sufficient to cover various modeling and analysis requirements for different
models and different development phases, and should be flexible for use with different functional
modeling and analysis techniques. It should be customizable for different modeling and analysis
requirements since only limited knowledge can be provided for a given design aspect, and only
limited information can be manipulated by the designer.

Automatic mapping between models with consideration of performance constraints. The soft-
ware design of an embedded system is typically a multi-stage process. At each stage, a system
model is generated from the model used in its preceding stage by refining with more design details
that became available. Current practice for such model transformation is a manual trial-and-error
process. A challenging problem is how to use the performance constraints to guide the design so
that only those transformations that will lead to meeting the constraitns are considered. More-
over, automation of model transformation is always highly desirable, as it can not only accelerate
the development, hence reducing the development cost, but also eliminate errors introduced by
manual model transformation.

Performance analysis of designed software in distributed environments. Performance analy-
sis is critical to ensure the runtime correctness of the designed software. The performance analysis
determines: (1) if the performance constraints can be met, and (2) how to configure the system
so as to meet all constraints. In a distributed environment involving multiple devices, it is very
difficult to verify that all performance constraints are met since it involves modeling all possible
dynamic scenarios at runtime. It is even more difficult to determine the configuration that meets
all constraints.

Performance-aware design process. The software design process for embedded software will change
with system performance considerations. Instead of only checking if functional requirements are
met at each design stage, we must now check both functional and performance constraints. This
will result in a performance-aware design process which finds a software configuration that fullfils
the required functions with the desired performance at each stage. We build such a design process
into a development tool chain to support the evolution of the software design model. A difficult
issue to be addressed in this process is information dependencies between different development
phases. Such information dependencies are critical, especially for performance analysis. An ex-
ample information dependency in embedded software design is allocation of software components
to physical devices to meet performance constraints that depends on the components’ resource
consumptions, which in turn depends on the device that each component is allocated to.

Integration of software development tool-chain introduces more issues than those listed above. As
embedded software becomes more complex, it is difficult to design, implement, and verify the software



without development tool support. Generally, the software tools used at different development phases
include tools for modeling, analysis, and implementation. Different tools could be used at a certain
design phase to process different aspects of the software. Different design phases may also require
different tools. As these tools are built with different system modeling assumptions, it is difficult, if not
impossible, to make these tools cooperative to solve the software development issues as a whole.

In current practice, the software for an embedded control system is first designed to meet its func-
tional requirements. Such a functional design includes components/operations for data acquisition,
data processing, control algorithms, and control commands generation. It also includes device drivers
for sensors and actuators. These functions are then partitioned into different subsystems for imple-
mentation. The performance of the designed software is analyzed after the design details are filled in.
Meanwhile, the platform for running the software is determined based on the system capacity planning.
The software components and subsystems are allocated on the platform while considering the perfor-
mance constraints. This is currently done by trial-and-error, and is one of the main bottlenecks in the
software development process. The runtime model is then generated with all timing attributes assigned.

Our objectives are to identify the modeling requirements of performance-aware embedded software
design, develop methodologies and algorithms to support performance-aware design and integrated
system analysis, and demonstrate that the developed methods and algorithms can be integrated with
other models in a modeling framework that meets the modeling requirements in a tool-chain integration.

1.2 A Project Overview

The techniques we developed are to address the challenging problems related to performance modeling
and analysis. To address the performance modeling framework issues, we adopted a meta-modeling
framework. A meta-model defines the elements and their inter-relationships for building application
models. Our performance information is annotated to the functional meta-model components. As
different meta-model components may be used for different aspects of the system design and modeling,
these components may have different performance information associated with them. Annotation of
performance to functional meta-model components allows the designer to specify and manipulate the
performance related only to those aspects of interest. Meanwhile, the performance parameters and their
corresponding values can be extracted by accessing functional components in an application model, and
hence, the performance manipulation can be easily integrated with the functional manipulation, and
accessed when a functional component is accessed. It is unnecessary to develop a dedicated algorithm
for performance information extraction from the model, thus significantly simplifying both algorithm
implementation and tool integration. Given the meta-model-based performance modeling framework,
we have developed a set of algorithms for automatic model transformation algorithms. These algorithms
take a high-level design model, filling more implementation details in such a way that the performance
constraints can be satisfied. As the design model is normally expressed as a graph or a set of graphs,
our algorithms employ the graph transformation techniques to refine the design model. The overall
performance constraints are then verified for the detailed models to detect any potential violation of the
constraints. The analysis algorithm verifies the satsifaction of constraints using the busy period concept
in the well-known real-time scheduling theory, and provides information on resource consumption as well
as individual delays of all components and the system. To break the information dependencies among
different stages of the software design, some assumptions are made initially for the model transformation.
An iterative process is developed to correct/refine the results obtained under the initial assumptions.

To demonstrate the correctness and effectiveness of the developed components, we have implemented
all of the above-mentioned techniques and algorithms as the AIRES toolkit. This toolkit is inte-
grated with the Generic Modeling Environment (GME) tool from Vanderbilt University. GME is a
MS Windows-based graphic tool, which provides powerful mechanisms to define meta-models and the



programs that manipulate models based on the meta-model. All of our algorithms are implemented
as plug-ins in GME, which is called the interpreter, and implemented as MS Windows Dynamic Link
Library files (DLL). The software construction process is also built into the tool as the interpreter
invocation sequence. The precedence between the interpreters reflects the information dependencies
between design models at different phases, and results can be refined by re-applying the algorithms to
a thus-obtained model.

To meet different design and analysis requirements in different domains, we have tailored the tool
for use in both avionics mission computing and automotive vehicle control applications, which were
selected as the DARPA MoBIES Open Experimental Platforms (OEPs), to demonstrate the flexibility
and effectiveness of the AIRES tool. Our results have shown that for both OEPs, the AIRES tool
can be easily integrated with other functional design and modeling tools, detect performance errors,
and generate (performance-wise) better system configurations. Our evaluation has also shown that the
software development process is accelerated by integrating the ATRES tool in the development tool-chain
for large and complex embedded systems.

1.3 Organization

The rest of the report is organized as follows. Section 2 discusses the modeling methods and mod-
els that we use in the AIRES toolkit. This includes performance models with meta-modeling and
meta-models for both automotive and avionics applications. Section 3 presents the algorithms we have
developed to analyze the software application models. These algorithms were designed based on the
information defined in the meta-model, and were used for both design automation and system analyses.
Particularly, we have developed algorithms for functional verification such as signal composbility and
event/invocation dependencies, algorithms for runtime model generation including component alloca-
tions, timing assigments, and task formation, and algorithms for schedulability and timing analysis.
Section 4 describes the end-to-end measurement method developed to obtain the underlying system
overheads. The method uses synthetic workloads and microbenchmarks with a sampling measurement
tool, and provides realistic analysis results and critical information for platform evaluation. Section 5
details the implementation of ATRES toolkit, including the models, algorithms, and methods developed
in this project. We have taken two different approaches to implementing these techniques in order to
show that the ATRES tool can be used as a standalone tool as well as a participant in a tool-chain. Sec-
tion 6 presents the evaluation results of both individual algorithms and the integrated experiments. The
evaluation of individual algorithms has demonstrated the scalability and accuracy of the analysis results
of all developed algorithms, while the integrated experiments have demonstrated AIRES’s usefulness
and effectiveness for the whole software development process. The report concludes with Section 7.



Chapter 2

Modeling Language

To support timing and schedulability analysis, one must specify essential information with the functional
model. In this project, we annotated the information essential for analysis. The annotated information
includes both t¢iming requirements and component charateristics. Further, to simplify the analysis,
the functional models are also categorized to define different aspects of the designed software along the
development process. The following sections describe the organization of the model elements, annotated
timing related information, and thus-tailored models for the domains of two OEPs.

2.1 Modeling elements and organization

We modeled different aspects of the functional system and performance. We classified models into

4 catergories according to their usage in the different design stages: (1) the component model is con-
structed first before the software structure is defined, and is used as basic building blocks in the software
construction; (2) the platform model specifies the execution environment of the software; (3) the soft-
ware model defines the software architecture; and (4) the runtime model specifies the runtime structure
of the system.
Software component model. To support the analysis, a software functional model must be constructed
first. Such a model is usually in some form of functional abstraction, and can be customized for a family
of applications in the same domain. Examples of such a component include devices components, data
processing components, and control algorithms.

The structure of each functional component is modeled as a port-based object, as shown in Figure 2.1.
In this model, each port-based object consists of a set of ports for inputs and outputs, a set of actions
for computation, and a behavioral specification to define component behaviors under different system
modes. The ports of a component provide a unified mechanism for a component to interact with other
components in an integration. The ports can be mapped to various process communication mechanisms
supported on a platform, such as global variables, shared memory, and local/remote message passing.
Each port can be associated to one or more types of events, therefore transforming the component to a
typed system for formal verification. The action set defines computations that a component can perform.
For example, a target positioning component can determine the target position in either 2-dimentions
or 3-dimentions, depending on the operation mode. Which actions the component will perform under
which mode is defined in the behavioral specification. Such behavioral specfications can be either static
built-in the component, or customized when the component is instantiated for in an integration. Note
that a component without event types associated to its ports and behavioral specifications defined is
only an abstract one. The formal verification is only applicable after an integration is constructed when
all components have been instantiated.

Formally, a software component can be defined as follow.



function

intfrf\a\ce I I I

e
i !
Function/ Function/ Function/
Behavior Behavior Behavior
t !

Performance
Parameters

Performance | ... Performance
Parameters Parameters

Characteristicsﬂ Characteristich Characteristics
[Hequirements] [Hequirements]

performance
interface

Figure 2.1: Component structure.

Definition 1 A software component is a pair ¢ =< B, P, >, where B, is a set of actions to transform
inputs to outputs controlled by a behavior specification, and P, is a set of ports for inputs (I.) and
outputs (O.) such that P. = I.|J O, and I.N O, = 0.

The component model in this work is more process-centric, meaning the component performs a
single type of function. To this end, a component can be viewed as a function call with input ports
and output ports are input and return parameters. An example of the process-centric component can
be a locating target component, which determines the relative position of a target according to the
sensed data. On the other hand, many applications adopt data-centric components. In a data-centric
component, ports are set of methods or function calls. A data-centric component usually performs
different functions according to which port is activated. For example, an engine component may perform
ignition operation and/or idle operation according to which function is called. We argue that the process-
centric components are finer grain components than the data-centric components, and a data-centric
components can be split into several process-centric component. Further, when data-centric components
are used to construct software, simultaneous invocations of different functions of one component are
possible. Since these functions may operate on the same set of data built into the component mutual
exclusion is required. This is implicitly modeled, which can make the analysis difficult. To eliminate
these difficulties, we use a port-depedency diagram to convert a model with data-centric components
to one with process-centric components. Details are given in later discussion on software model.

Performance of a component is modeled as a set of annotated attributes of actions. Since components
are building blocks in our integration model, the system-level performance must be derived using the
performance constitute components (along with their interactions and execution environments). Al-
though the overall component performance varies according to the event it handles and behaviors it
performs, the performance of each action, such as worst-case execution time, is almost a constant for a
given platform. Further, some components may be subject to certain performance requirements. For
example, a data collection component of a continous motion must be invoked at a certain frequency.
Such requirements should also be annotated to the actions. Figure 2.2 shows the component structure
with performance annotations.

Platform model. A platform defines the execution environment of the designed software, therefore, the
model of the platform is essential for software analysis. A platform consists of components of hardware
such as processor, memory and communication links, and supportive software such as operating systems
and middleware. The system can then be viewed as a hierarchical realization model as described in [2].
A 3-layer realization hierarchy is showed in Figure 2.1.
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In this realization hierarchical model, the modeled platform components include hardware components
and supportive software components. The hardware components include various types of processors,
memory modules, and connection components. The performance characteristics of these components
include information such as the clock speed of a processor, memory access time, propogation delay and
transmition speed of a connection. To simplify the work yet make it representative, we considered only
operating systems for the supportive software, and assumed the application will be running directly on
top of the real-time operating systems (RTOS). The RTOS is also modeled as a collection of services,
such as scheduling service, timing and clock management service, interrupt services, etc. Performance
of each service is also modeled as RTOS component performance in the platform model. The perfor-
mance includes delays and variances introduced by these services (since they share the same hardware
resources with application components). Note that the performance of the supportive software may
vary according to the workload and configuration of the application software. We developed an end-
to-end measurement-based technique to quanttitatively profile these effects in this work, which will be
discussed in more detail in later section of this report.

Software model. The designed embedded control software is modeled as a set of intercommunicating
components. Each component has a structure as defined in the component model, and performs a
portion of the functions defined in the overall system design. The software with constitute components
and their communications can then be represented in a form of directed graph, called a structural
model. Each node in the structural model represents a software component, and each edge represents



a communication between a pair of components. Note the communication can be a data-flow message
or a control flow event. Figure 2.4 shows an example of software model.
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Figure 2.4: An example software model.

The behaviors of the designed software are represented as component chains, called transactions, in a
structural model. To facilitate the analysis, each transaction is supposed to be a directed acyclic graph.
For a transaction that contains a cycle, it can be converted into acyclic one as follows:

1. The contained cycle runs at a faster rate than the transaction. This is typical in a multi-rate
control system, where an inner control loop runs faster than the outer control loop. In this
case, the cycle representing the inner control loop can be modeled as a separate transaction,
and is subsituted with a single node in the original transaction. The graph after the conversion
is semantically equivalent to the original one because (i) communciations in such a case must be
data communication (a control loop will force the cycle to run at the same rate as the transaction),
and (ii) not all data generated by the cycle can be consumed by the transaction.

2. The contained cycle runs at the same rate as the transaction. This is typical for close loop
feedback control. In this case, there must be at least one communication in the cycle that is data
communication. Otherwise, the cycle forms a livelock, and exhuasts the computation resource
for other components in the transaction to run. We can then break the cycle from the data
communication edge, making the the generated data in the ¢ — th invocation to be used in the
(i + 1)th invocation. Then the cycle is broken into a chain in the transaction, and runs at the
same rate.

In the software model, components can be assigned to an execution location. An execution location is
a processor that the component will reside on. We allow software components bound to certain processor
in the software model in order to support modeling device- and location-dependent software, such as I/0O
drivers and data preprocessing software. The constraints of software component execution locations are
called location constraints. It is the software designer’s responsibility to model the location constraints
in a software model. In this work, we assume all components are statically allocated to some processor,
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and will not migrate during execution. There can be multiple copies of a component for fault-tolerant
and reliability reason. However, we assume that at most one of these copies is allowed to be active at
a given time, and all copies maintain a consistent system state.

For a model constructed with data-centric components, we convert the model to one with process-
centric components. The model with data-centric components is constructed by converting the model
to a port dependency graph (PDG) as follows:

1. For each method/function of a data-centric component in the model that is invoked by other
component(s), create a node in the PDG.

2. For each precondition a PDG node needs to satisfy for its execution, including both events and
data, create an input port for it.

3. For each results a PDG node generates, including both events and data, create an output port for
it.

4. For each invocation link in the original model, create a link between corresponding ports of nodes
in PDG.

5. If there exist multiple event or data links between a pair of nodes in PDG, merge them into one.

The thus obtained PDG is a model with process-centric components.

The performance specifications for the software model include both performance constraints and
performance characteristics of individual software components and communication links. At the system
level, the rate of each transaction and its completion deadlines must be specified. The constraints
among the transactions, such as input separation ! and output correlations 2, should also be modeled.
At the component level, the resource demand, usually represented as the worst-case execution time, of
a component must be provided. In our model, the component resource demand is modeled as a cost of
a node. Additionally, the resource demand of a communication link between components, represented
in communication delay, should also be provided. The resource demand of a communication is modeled
as the cost of the link in the model. Depending on the type of the communication (data or event) and
the size of the message passed over the link, the link cost are different. Usually, we assign the cost for
an event link to zero as such delay is negligible (function call takes trivial time), and assign the cost for
a data link to its maximum message size.

Runtime model. A runtime model specifies the runtime structure of the designed software. As more
and more embedded software tend to use the commercial embedded and real-time operating systems
for the runtime schedule and resource management, and the basic schedulable unit in an operating
system is a process/thread (called a task), the design software with all components and inter-component
communications must be mapped to tasks for scheduling and executions on a target platform.

The runtime model is usually represented as a task graph, which is a directed acyclic graph with each
node in the graph as a task, and the link between nodes for task precedent constraints (data and/or
event). To schedule a task, the system needs to know the task invocation rate, the resource demands
of a task in the form of the worst-case execution time, and the task’s priority to determine the resource
allocation when there are multiple tasks competing for the same resource. For a runtime model, each
task must also be assigned a processor for execution.

! An input separation is defined as the time difference between to input data. Satisfaction of input separation constraints
will ensure the transaction using correct version of input data to generate the outputs.

2An output correlation is the time difference between two outputs. Satisfaction of the output correlation constraints
ensures the stable system and correct control.
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The performance specifications for a runtime model include both specification for tasks and for
communications. The task performance specfication includes task invocation rate (period) and its
worst-case execution time. The task invocation rate are derived from the transaction rate in the software
structural model. The worst-case execution time of a task can be computed using the resource demands
of the components inside the task.

2.2 Meta-model construction

The implementation of the ATRES meta-model follows the discussions given in the previous sec-
tion. Particularly, the meta-model consists of 4 modeling categories, namely the component folder for
reusable components, software folder for software structure of an application, hardware folder for plat-
form configuration, and task folder for runtime system modeling. In the context of MoBIES program, we
applied and evaluated the modeling techniques to MoBIES selected OEPs of Automotive and Avionics
applications. Due to the differences of modeling requirements, development tool chain, and develop-
ment processes for Automotive and Avionics applications, we tailored the above discussed meta-model
slightly differently to suite the modeling and analysis requirements of these application domains. The
following sections present details of the meta-models for Automotive and Avionics domain.
2.2.1 Meta-model for Automotive

The embedded control software development for Automotive applications usually starts from control
design. The whole system control, including both the controller with its software and physical system
with controlled objects, are specified in some control design and simulation environment. Such control
design ensures the correctness of the whole system both functionally and timely. One such control
design tool used in Automotive industry is Matlab Simulink and Stateflow diagram.

Simulink and Stateflow component model. The models of the controller software in Simulink
and Stateflow can be used as reusable components in the software integration and analysis. In order
to use these Simulink and Stateflow models, we must import them to the GME environment, which
is the graphic modeling environment our timing model and analysis is based on. The meta-model for
Simulink and Stateflow are given in Figure 2.5 and 2.6.

Software architecture model. Software models in AIRES are multi-level models. The software
model is constructed in a software folder called SWFolder. The software model is called Target. In the
Target model, there can exist multiple subsystem models, each of which models a portion of the controller
software. Such subsystems are typically partitioned according to functional design. For example, an
Engine controller can be partitioned into the subsystems of Air-Fuel Ratio control, Electronic Throttle
control, and Spark control. Multiple components are integrated to implement a subsystem. These
components can be those modeled and stored in Simulink and Stateflow folders. Components contain
ports for communications, which can be either data ports or event ports. These ports are also classified
into input and output ports. A legal connection can only happen between a pair of input and output
of the same type of ports. To model software component-processor binding, a reference of a CPU
component in platform model can be created in either subsystem or software component(s) or both.
The CPU reference in a subsystem model is a simplified version of modeling the CPU references in
the components in the subsystem, which indicates all components in the subsystem are bound to the
referred CPU. If a CPU references is created in a component instance, the component is bound to the
referred CPU. We allow a CPU reference of a component to be different from the CPU of the subsystem
that contains the component. In such a case, the component will be running on the specified CPU,
while other components of the subsystem will be running on the CPU of the subsystem. For those
components without CPU reference, they can be freely allocated to any processor. AIRES analysis
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algorithm can determine the execution location for these components according to selected allocation
strategy.

The meta-model also specifies the performance information. The performance requirements are given
at the subsystem level, including system period and deadline. Software components have worst-case
execution times and priorities associated to them. The data connections also have data size associated
with them for deriving the communication delays.

The meta-model of AIRES software model is presented in Figure 2.7.
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Figure 2.7: Software meta-model for Automotive in AIRES.

Platform configuration model. The platform model in the HWFolder specifies the configuration
of the designed software execution environment, including processors (CPU), networks, and operating
systems, as shown in Figure 2.8. Performance related parameters such as CPU bound and network con-
nection speed are defined in the meta-model for hardware components. For operating systems, allowed
performance parameters include various overheads, such as timer overhead, context switch overhead,
and scheduling overhead. Note that the values of these overheads depend on platform configuration such
as the type of the processor, the implementation of the OS, and the specified timer resolution. Since
we focus on computation-centric applications, and there are usually only a small number of candidate
hardware-OS combinations, we argue that the value of these performance related parameters can be
measured.
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Figure 2.8: Platform meta-model for Automotive in AIRES.

Runtime model. A runtime system of a designed software model consists of a set of tasks. Similar to
the software model, a runtime model, called a task system, is stored in the TaskFolder. A task system
is also a multi-level model. At the highest level, a task system consists of one or more logical task, each
of which defines a task chain. A task in a logical task is the basic schedulable execution unit of the
system. It can be implemented as a process/thread of the target operating system. A task consists of
a set of actions, each of which is a software component in the software model. As the actions in a task
are executed sequentially with invocation dependencies, the communication cost between actions can
be negligible. The dependencies between tasks can be either event dependencies or data dependencies.
The event dependencies models the control flow, and can be implemented as event trigger like those in
QNX, VxWorks, and OSEKWorks. Data dependencies, on the other hand, model the data flow, and
can be implemented as inter-process communications. To model these dependencies, a task contains
input ports and output ports for either event communication (control flow) or data communication
(data flow). Same as in the software model, an input port is only allowed to connect to an output port
of the same type. Note that the logical tasks in a runtime system and the subsystems in the software
model do not necessarily have an one-to-one mapping. As a subsystem may involve multiple processors,
it can be implemented as multiple tasks running on different processors in the runtime model. On the
other hand, a logical task typically consists of tasks of the same subsystem, as the tasks of different
subsystems may not have any dependency or communication. Since many tasks in ECSW are periodic,
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we created a special trigger in the meta-model to model this type of time-triggered task chains. In
an application model, the trigger object, called timer, connects only to the event port of the first task
in the logical task system. Each task also contains a CPU reference for execution location modeling,
similar as the software model.

The performance modeling for a runtime system includes end-to-end timing constraints for a task
chain, the period and relative deadline of a task, execution rate and deadline of a logical task chain, and
execution time of each task and action. Some of the information defined in this meta-model are derived
from the others. For example, the execution time of a task can be computed by adding up the execution
times of all its actions. The period and deadline can be derived from the period and deadline of the
logical task using some algorithm like deadline distribution [14]. Figure 2.9 shows the meta-model of
the AIRES runtime system.
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Figure 2.9: Runtime system meta-model for Automotive in AIRES.

2.2.2 Meta-model for Avionics

The meta-model for Avionics applications, called Embedded System Modeling Language (ESML), is
developed by Vanderbilt University. It is designed and implemented to model the software in the Bold
Stroke framework. The Bold Stroke framework [24, 25] is a product-line architecture used at Boeing
for developing avionics mission computing software, which is the embedded software aboard a millitary
aircraft for controlling mission-critical functions, such as navigation, target tracking and identification,
and weapon firing. The system and components in Bold Stroke framework are modeled in UML [28],
manually implemented in C++4, and runs on top of Real-Time CORBA Event Service. The initial
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Figure 2.10: Meta-model of Avionics components.

models of components are constructed in Rational Rose. The ESML, therefore, is based on Real-Time
Event Channel implemented in the TAO CORBRA [23], and captures all apsects of the embedded
software, including software architecture, timing and resource constraints, execution threads, platform
information, allocation of components, etc. The models essential for performance analysis in ESML are
component models that describes the function and structure of the reusable components, interaction
models that model the software architecture, and configuration models that model the runtime system
including OS scheduling units and hardware organizations.

ESML component model. The components in ESML are composite objects with ports, which
interact with one another, either through event triggers or procedure invocation. Figure 2.10 shows the
meta-model of components in ESML.

In ESML, each component can have publish ports to publish events, subscribe ports to receive
events, receptacles to issue method invocations, and facets to accept method invocations. Each input
port, either a subscribe port or a facet, has an associated action that in turn triggers one or more
output ports, either publish ports or receptacles, of the same component. Given the fact that different
ports can be associated with different actions, the component model in ESML is data-centric instead of
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process-centric. To model the components’ performance, a worst-case execution time (WCET) attribute
is annotated to every action. There is also a QoS object defined in ESML that can be associated with
components, event channels, and invocations to specify the execution times, deadlines, and periods of
these entities. For each event port (publish or subscribe), a period of event arrivals can be defined. For
a subscribe port, the deadline of an event can be further specified.

ESML interaction model. The software model in ESML is defined as an interaction model. The
components in an interaction model interact with each other through their ports. Interactions with
events are only allowed between pairs of publish ports and subscribe ports, while interaction with
invocations are only allowed between pairs of receptacles and facets. Figure 2.11 shows the meta-model
of interaction models.

In this meta-model, component interactions follow a control-push data-pull style. First, the data
producer component publishes a DataAvailable event from its publish port, indicating that it has fresh
data; when the data consumer component receives the event from its subscribe port, it issues a GetData
call from its receptacle to the producer’s facet to retrieve the data. Each subscribe port can subscribe
to multiple events, and has a correlation attribute, either AND or OR. For AND correlation, the action
associated with the port is executed only when all of the input events arrive; for OR correlation, the
action associated with the port is triggered when any of the input events arrive. With such an interaction
model, we can trace the interactions among the components following their events/invocations to form
a directed acyclic graph, called Port Dependency Graph, for performance analysis.

ESML configuration model. The configuration model in ESML models the runtime view of the
system. A configuration model contains hardware and network models, the execution process and
threads of operating system/middleware, and the location (processor-thread) of software components.
The meta-model for configuration is shown in Figure 2.12.

Models in AIF format. ESML provides a superset of information needed for analysis. To reduce the
information an analysis tool like ATRES needs to manipulate, we extract analysis related information
from an ESML model in the form of Analysis Interface Format (AIF). The AIF is implemented as
an XML file, and contains subset of ESML language of dependency and real-time information. With
ATF, a third party modeling and analysis tool can be easily integrated in the development tool chain.
ATRES tools are designed and implemented to work with AIF. The meta-models of AIF are shown in
Figure 2.13 and 2.14.
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Chapter 3

Analysis and Verification Algorithms

The core of the ATRES tool is a set of analysis algorithms manipulating the application models con-
structed using the meta-model. Some of these algorithms are used to provide design transformation
and design recommendation, while the others are use to verify the correctness of the design functions
and/or performance.

3.1 Functional composition and check

The functional check algorithms are designed to detect the mistakes made by the designer during
the model construction. Since the software model usually consists of several hundred components, it
is difficult for the designer to walk through them one-by-one to check whether there exist errors such
as wiring ports with different types or creating a cyclic dependencies among components. Such design
mistakes are common especially when multiple designers are involved. Our algorithms are designed
to automaticaly detect such errors in a given software model so that the designer can easily find the
components/events/invocations involved in the errors, and fix them quickly. As the modeling and
analysis requirements for Automotive and Avionics applications are different, our algorithm performs
the component composition check for Automotive models, and performs event dependency check for
Avionices.

Component composition check. Component composition check verifies the correctness of links
between components’ ports. A correct link must be one of the following:

e The link connects an output port and an input port of different components at the same modeling
hierarchy, with the output port as the source and the input port as the destination, as link D — E
shown in Figure 3.1. The outputs of the outport must also be compatible with the inputs of the
input port.

e The link connects a pair of input ports at two immediate adjacent modeling hierarchies, with the
port at the higher modeling level as the source and the port at the lower level as the destination,
as link A — C and B — FE shown in Figure 3.1. The type of the input port of the higher level
inherites the type of the input port of the lower level.

e The link connects a pair of output ports at two immediate adjacent modeling hierarchies, with
the port at the lower level as the source and the port at the higher level as the destination, as link
D — G and F — H shown in Figure 3.1. The type of the output port of the higher level inherites
the type of the output port of the lower level.
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Figure 3.1: Correct links in software model.

Two compatible ports must satisfy the following conditions:
1. The two ports are the same type, meaning they are both either data ports or event ports.
2. If they are event ports, the event at the source port is acceptable for the destination port.

3. If they are data ports, the data at the source and destination are (i) both of the same data type,
and (ii) the value range of the source should be equal to or smaller than the value range of the
destination.

The component composition check algorithm requires the existence of reusable components. In ATRES
toolkit, the reusable components can be either manually created in the software folder, or imported from
Simulink /Stateflow diagram. The attributes of the reusable components’ ports must be described in
a spreadsheet. The required attributes include port name, port type, data type, data length, data
dimension, value range, and default value.

The algorithm performs the composition check by traversing the graph of the software model, and
comparing the values of linked ports. Algorithm 1 shows the algorithm for the composition check.

Algorithm 1 Algorithm for composition check.

INPUT: software model in graph M =< C, L >;
port attributes and values < p,a,v >;
OUTPUT: incompatible port set S;
BEGIN
S
foreach [(s,d) € L do
Cs = findcomponent(s);
Cd = findcomponent(d);
< 8,0,v >= findagripute(Cs);
< d,a,v >= findasrivute(Cs);
if incompatible(< s,a,v >,< d,a,v >) then
list + (s,d);
end-for
10  return S,
END
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Event dependency check. The goal of the event dependency check is to detect the existence of
event /invocation cycles, and events published without a subscriber or events subscribed with a publisher.
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As discussed in previous section, the software model for Avionics is a data-centric component diagram.
This diagram must be translated into a port dependency graph (PDG) for analysis. The design and
implementation of the event dependency check in AIRES is based on PDG. In this work, we use ports
to refer to both event ports (publish and subscribe) and invocation interfaces (receptacle and facet).

The PDG captures all the relevant dependency information in the ESML model, and serves as the
backbone data structure for all subsequent analysis tasks. However, we define two other types of
dependency graphs for purposes of convenient visual display as well as easy manipulation in certain
analysis tasks. They capture dependency information at a higher level of abstraction — component-level
instead of port-level — hiding all the intra-component dependencies. They can be derived directly and
straightforwardly from PDG.

Definition 2 A Port Dpenedency Graph (PDG) is a graph (V,, E,), where

o V, is a set of ports, {p;,1 <1 < N,}. Each p; can be one of 4 types: publish port pyyp, subscribe
port psup, receptacle Drecep, OT facet p facet-

e E, is a set of directed, weighted port connections, conn;,1 < i < Neopy, and each conn; can be
one of 2 types:

— Inter-component dependency: is either event-trigger dependency between a ppyp and a pgyp,
or invocation dependency between a Precept and @ Pfocet-

— Intra-component dependency: describes the intra-component trigger pathways from input
ports to output ports of the same component.

The weight of an edge is equal to the execution rate assigned to the ports that it connects. !

Definition 3 A Component Event Dependency Graph (CEDG) is a graph (V., E..), where
o V. is a set of components, {c;,1 <1i < N.}.

o FE. is a set of directed, weighted component event connections, which are derived from inter-
component connections between event ports on the components.

Definition 4 A Component Invocation Dependency Graph (CIDG) is a graph (V., E.;), where
o V. is a set of components, {c;,1 <1i < N.}.

o FE. is a set of directed, weighted component invocation connections, which are derived from the
inter-component connections between invocation ports (receptacles and facets) on the components.

Due to the control-push data-pull interaction style, CIDG is in most part a reverse graph of CEDG,
i.e., a graph obtained by reversing the direction of the edges of CEDG, but it’s also common to find event
connections without corresponding invocation connections, or vice versa. Similar analysis techniques
can be applied to both types of graphs. We mostly focus on event dependencies in this paper.

We can use conventional graph algorithms to analyze the dependency graphs, and identify certain
anomalies such as:

e Dependency cycles. A cycle of event or invocation dependencies usually indicates a design error
since it becomes an infinite loop at runtime.

!The edge weight cannot be assigned until the rate assignment algorithm has been run.
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e Events published with no subscribers, or events subscribed to with no publishers. AIRES provides
warnings to the designer, even though this may not necessarily be an error.

e Component ports unreachable from any timers, hence unable to be assigned rates. This is elabo-
rated in Section 3.2.2.

We can also perform forward/backward slicing of the dependency graphs. Given a component or a
port, we can answer user queries such as

e What downstream components/ports can this component or port potentially affect via event or
invocation dependencies?

e What upstream components/ports can potentially affect this component or port?

This is achieved by traversing the dependency graphs forward or backward starting from a component
(for CEDG and CIDG) or a port (for PDG). These queries are useful in software evolution, where a
designer can assess the impact of changing or replacing a certain component, as well as for other purposes
such as localizing faults, minimizing regression tests, reusing components, and system re-engineering.

Even though the current avionics software does not allow dynamic creation or destruction of compo-
nents, both the inter- and intra-component dependencies can change at runtime due to modal behavior,
that is, components can change mode to publish new events, stop publishing old events, or change its
internal trigger pathways. For example, a modal component can have both active and inactive modes.
When in the active mode, an input event triggers an output event; when in the inactive mode, an
incoming event is simply ignored and dropped. ESML allows modeling of such behavior by associating
a finite state machine with a modal component. Instead of a single PDG, we can view the system
as having multiple pre-defined system-level modes, obtained by all combinations of component modes.
We can construct a PDG for each system-level model, and apply the analysis techniques to each mode
separately.

3.2 Runtime model generation

The runtime model generation is a process of allocating the components in the software model to the
processors in the platform model, assigning the timing attributes for these components and commu-
nications for execution schedule, and forming tasks that are individually schedulable by the operating
systems in the processors.
3.2.1 Component allocation

Since the embedded software usually runs on a resource-limited platform, we considered allocation
strategies that lead to minimize the resource usage. Specifically, we considered computation resources
(CPUs) and communication resources (networks) in this work. The implemented strategies include
first-fit, load-balance, communication-minimization, and the combination of communication-minization
and first-fit or load-balance.

All of the implemented strategies require knowing the resource demands of components and commu-
nications. We used the utilizations of the software components to model their computation resource
demands. and used the message size passed between ports to model the communication resource de-

mands. The utilization of a software component can be computed as:
€c

Uc:Fc

where U, is the utilization of the component c, e, is the worst-case execution time (WCET) of ¢, and
P, is the invocation period of ¢. The invocation period P. must be derived for every component ¢ in the
software model from high-level system rate specifications. This will be further detailed in Section 3.2.2.
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First-fit allocation algorithm. The first-fit allocation strategy aims at minimizing the total number
of the processors in the system. In the first-fit allocation algorithm, the current processor must be fully
utilized where no more component can be further allocated to it before the algorithm moves to another
processor. The algorithm is shown in Algorithm 2.

Algorithm 2 Algorithm for first-fit allocation.

INPUT: software model in graph M =< C, L >;
utilization U, for each ¢ € C}
a set of processors P = {P;} with utilization bounds {B;}.
OUTPUT: components on processors C(F;).
BEGIN
sort ¢ € C so that Uy > Uy > - > Up;
sort P; so that By > By > - > By
for P; to P, do U, = B,;

Psleftarrowfirst(P); P <+ P —{Pr};
Uf — Bf;
¢« first(C);

1
2
3
4
5  while (P # ¢) A (C # ¢) do
6
7
8
9 for every c € C do

10 if U; > U, then

11 C(Py) < CPy U {c};

12 U < Uy — Uy

13 C + C —{c}; c + first(C);
14 end-if;

15 end-for;

16  end-while;

17

18  if C' # ¢ then return fail, not enough processors;
19  else return {C(F;)};
END

In Algorithm 2, the execution locations of the components depend solely on their computation re-
source demands, and the communications are all ignored. The algorithm starts from the processor
with the most capacity, tries to allocate components one-by-one if the component can fit in the current
processor, and removes the component from the unallocated set to the current processor set. In the case
that there is no component that can be allocated to the current processor, the algorithm picks another
one in the processor list. In the implementation of this algorithm, we took the manually allocated
components (for processor-bound components) on a processor into account by substracting the resource
consumed by the pre-allocated components for the utilization bound of the processor. This is due to
the fact that the first-fit algorithm tries to fully utilize the processor, therefore allocating a component
to the processor is the same as lowering the available resource for further allocations. The algorithm
terminates when there are no more processors (fail), or all components are allocated. The computation
complexity of the first-fit algorithm is O(nm), if there are n software components, and m processors.
Although the first-fit algorithm yields an allocation that requires the minimum number of computation
resources, the final communication resource consumption may not be optimal.
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Load-balance allocation algorithm. The load-balance allocation algorithm aims to distribute the
workload evenly among all processors in the platform. Although the first-fit allocation requires the
minimum number of processors, all processors except the last one are fully used, and can not ensure
meeting the timing constraints when the workloads changes, such as transient overload. On the other
hand, the platform is usually designed according to other constraints such as reliability and device
location. For example, the software for engine control, transmission control, and entertainment device
control should be allocated on different processors in an automotive system. In this case, at least 3
processors are in the platform. We, therefore, would like to evenly distribute the workloads of the
software across all processors. Doing so provides each processor with some free resource to handle
the dynamic workloads that may not be predictable in the design. The detailed algorithm is given in
Algorithm 3.

Algorithm 3 Algorithm for load-balance allocation.

INPUT: software model in graph M =< C, L >;
utilization U, for each ¢ € C}
a set of processors P = {P;} with utilization bounds {B;}.
OUTPUT: components on processors C(F;).
BEGIN
sort C according to U, in descending order;

1

2

3  while C # ¢ do

4 for P, € P do

5 UR) ¢ Yeeorpy Ues
6 end-for;

7 sort P according to U(P,) in ascending order;

8 Py < first(P);

9 ¢« first(C);

10 C + C —{c};

11 C(Pf) < C(Pr) U{c};

12 U(Py) < U(Py) + Ug;

13  end-while;

14

15  if any U(P,) > B, then return fail, not enough resource;
16  else return C(F;);

END.

Algorithm 3 allocates the component with the most resource demands to a processor with the most
available resources. So we need to compute the total utilization of every processor to determine which
one has the least workload (potentially the most available resource). This computation must be repeated
every time a component is allocated, since the new allocation changes the utilization of a processor,
and may consequently alter the processor for next allocation. The algorithm terminates when all
components are allocated. If there exist any processor whose utilization is greater then its utilization
bound, it indicates that there is not sufficient resource to run all the components. Otherwise, C(F;)
contains components should be allocated on each processor. The computation complexity of Algorithm 3
is O(nlogm), where n is the number of software components, and m is the number of processors. Note
resorting P in the algorithm after a component is allocated is only a process to find a proper position
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in the sorted list followed by an insertion of P;. This takes O(logm) time. In the implementation, we
sorted P first before entering the while loop, and using a binary search to resort P.

Communication-minimization allocation algorithm. Communication-minimization algorithm
aims to minimize the communications among a set of processors. As more embedded systems are
distributed, the communication delays become critical in satisfying the system performance constraints
since such delays usually are much larger when compared with computation delays. Meanwhile, most
of current targets tend to use shared communication links to connect multiple processors in order to
save costs, and passing fewer messages over the shared link reduces the collisions which can, therefore,
potentially improve the system performance.

Finding a min-cut of a graph is known to be NP-hard. Therefore, we used a heuristics developed
in [1] to find a sub-optimal solution. The heuristics uses the sum of the cost of all incident edges of
a node as the weight of the node. As the communication cost after a cut is the sum of the the costs
on all edges, the node cost used in the heuristics represents the total communication cost after a cut.
Therefore, finding a cut that minimizes the communication becomes finding a cut that minimizes the
node cost. Algorithm 4 presents the algorithm allocating the software to a set of processors with the
minimum communication costs.

Algorithm 4 Algorithm for allocation with minimum communications.

INPUT: software model in graph M =< C, L >;
utilization U, for each c € C}
a set of processors P = {P;} with utilization bounds {B;}.
OUTPUT: components on processors C(P;).
BEGIN
foreach c € C' do
We <= Te * (Z(c,i)EL l(C, 7’) + Z(i,c)EL l(i’ C));
C <+ sort(C,descend);

c < first(9);
d + node(maz{l(c,i),l(i,c)});

1

2

3

4

5 for n = 1to|C| — |P| do
6

7

8 cd<+ {c,d};

9

Wed = Te * (X(eiyer—(ed) 16 1) + Xiieen—(de) L(E:0) +1a* (Caiyen—(a,e) H(d:9) + X(a)er—(e,a) 1% ));

10  C <« sort(S — ¢, d + cd, descend);
11 end-for;

12

13 foreach P; € P do

14 C(PB) <+ first(S);

15 C+ C—-C(F);

16 end-for;

17

18 return C(F;);
END.

Algorithm 4 first computes the weight of each component, w,, in the model as the sum of the costs
of all its edges, then sorts the components in the descending order according to w.. As there are |C|
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number of components allocated to | P| number of processors (assume |C| > | P|), C' must be partitioned
into |P| groups. In each step, the algorithm picks one component ¢ with the highest weight, finds the
highest cost edges [ among all its incident edges, and merges the two components connected to [. Such
merge indicates the two components should be allocated to the same processor to yield the minimum
communication after the cut. The two components are then considered as one inserted back to the
component set. The weight of the new merged components is computed as the sum of the edge costs
from/to both components excluding the edge between them. The component set must be resorted after
each merge. After each step, |C| is reduce by 1. The algorithm terminates in |C| — |P| steps when |P|
number of components left in C'. Each component in C' at the end of the algorithm represents a group
of components allocated to the same processor. Sorting C' after each step takes O(logn) time where n
is the number of components, and the algorithm needs (n — m) steps to find m partitions, where m is
the number of processors. The computation complexity of Algorithm 4 therefore is O((n — m)logn).

Combinational allocation algorithm. The combinational allocation algorithm aims to achieve
multiple goals instead of one when allocating the software components. In our work, the goals are
from both computation resource constraints and communication resource constraints. Specifically, we
considered the combinations of the strategies discussed previously, including the combinations of first-fit
and communication-minimization, and load-balance and communication-minimization.

Since different allocation strategies may conflict with each other in nature, we implemented the com-
binational allocation algorithms with user defined primary consideration and secondary consideration.
The primary consideration is used to first to allocate the software components, and the secondary con-
sideration is used to make choices among different allocations generated using the primary consideration
and with the same performance. For example, using first-fit with communication-minimization strat-
egy, the primary consideration is first-fit algorithm, and the secondary consideration is communication-
minimization. In case that allocating different components yields the same utilization of the a processor,
the one with less communication cost is selected.

Figure 3.2 gives a software structural model. The values for nodes are the computation resource
demands (in utilization), while the values along the links are the communication resource demands.
Suppose the allocation strategy is first-fit with communication-minimization, and there are 3 homoge-
neous processors with utilization bounds are all 1. The process of the allocation is given in Table 3.1.

B elo

Figure 3.2: Software model of the exmaple.
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working  allocated unallocated

step processor components components

1 P, (E) H,B,F,A,G,C,D
2 P, (E,H) B,F,A,G,C,D

3 P, (E,H,B) F A G,C,D

4 P, (E,H,B,C) F,A,G,D

5 P, (E,H,B,C,A) F,G,D

6 P, (E,H,B,C,A)(F) G,D

7 P (E,H,B,C,A)(F,QG) D

8 P (E,H,B,C,A)(F,G,D)

Table 3.1: Allocation steps.

According to the first-fit allocation algorithm, the result of the example will be component (E, H, B, F, A)

on P, and (G, C, D) on P,. Using the combinational allocation of first-fit with minimization-allocation,
the component C' will be allocated on P;. This is because allocating C, or F, or A, or G on P; yields
the same utilization. Therefore, the one that will result in less total communication cost will be chosen,
which is C. Note that this is also a heuristic search for a sub-optimal solution in the algorithm, as the
optimal solution requires examining all permutation of allocations with the same utilization which is
NP-hard. Given the size of computation-intensive embedded software with a large number of compo-
nents but small number of processors, these heuristics are essential for scalability. The same strategy
is applicable for other combinations (load-balance with minimization-communication, minimization-
communication with first-fit or load-balance).

The algorithm is illustrated in Algorithm 5. The algorithm first allocates the components according
to the user-defined primary consideration. If there are multiple choices leading to the same results
using the primary consideration, it relies on a tie-breaking function, ResolvTie(), to choose one among
the alternatives using the secondary consideration. The ResolvTie() function takes the unallocated
components, checks those combinations leading to the same results for the primary consideration, and
chooses the one meeting the secondary consideration.

Note that finding an equivalent alternative allocations for a component ¢ with arbitary combination
of other components is also NP-hard (map to integer knapsack problem). Therefore, we used a heuristics
for the selection of the alternatives. When the secondary consideration is first-fit or load-balance, we
used the componet’s utilization as the heuristics, and chose the one with the maximum utilization first.
When the secondary consideration is communication, we used the number of connected components as
the heuristics, and chose the one with the most connected components.

With all the heuristics given above, the computation complexisty of the combinational allocation
algorithm is O(n?), where n is the number of the software components in the model.

3.2.2 Timing attributes assignments

The runtime model of a designed ECSW must include timing attributes for each components in order
to construct a schedule for runtime execution. However, the timing specifications given in the behavior
and structural models is usually expressed as high-level end-to-end constraints, such as execution rates
and deadlines of the system transactions. These high-level constraints must be partitioned and assigned
to the constitute components for scheduling. In this work, we applied two techniques to derive timing
attributes for the software components in the structural model, namely rate propogation and deadline
distribution.
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Algorithm 5 Algorithm for combinational allocation.

INPUT: software model in graph M =< C, L >;
utilization U, for each c € C}
a set of processors P = {P;} with utilization bounds {B;};
considerations Pr and Se.

OUTPUT: components on processors C(F;).

BEGIN

1 foreach ce€ C do

2 allocate ¢ to P; according to Pr;

if (e, C C) A (C(P;) + {ca} = C(FP;) < cunderPr then
¢s < ResolvTie(P;, C,c);
C(P) « cs;
C + C—A{cs};
else
C(R) + ¢
C + C—{c};
10  end-if-else;
11 end-for;
12
13 if C = () then return C(F));
14 else return Fail, notenoughresource;
END.

© 00 g O Ot i W

ResolvTie(P;, C, c)
15 BEGIN

16 foreach cysuchthat(C(F;) < cq) = (C(F;) < c)underPr do
17 cost(cy) < costof Seforallocatingc,toP;;

18

19 ¢5 « {cq : min(cost(c,)};

20 return cg;

21 END.

Rate propogation. The rate propogation is used to assign invocation rates of the components in
a model. Knowing the execution rate of a component is essential for computing the component’s
resource demands, which are consequently used in the component allocation algorithms to determine
the execution location of the component.

In an embedded system, the software execution is usually triggered by the stimuli, in the form of either
data arrivals or event occurances, from the controlled external world. From the software perspective,
this indicates the invocation of input components, such as periodic sensor reading or invocation of
interrupt handler. The arrivals of input data/events at the input components will then trigger a chain
of executions of other components to process the information until the control commands are generated
and sent out by the output components. In the system specification, the execution rate is typically
given as the rate of an input or output. Therefore, by following the information processing flow from
an input forward (or an output backward), we can derive the rate of all components in a transaction.

An issue in such an approach is that there exist some components shared by multiple transactions
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running at different rates. A shared component can either be invoked upon the arrivals of all the inputs,
called an AND invocation, or the arrival of any input, called an OR invocation. For an AND invocation,
the component’s rate should be the lowest (or the highest for some application) rate of the component’s
predecessors, while the rate should be the sum of all its predecessors for an OR invocation. To simplify
the analysis, an OR invocation can be modeled as duplications of the component in every transaction
sharing it. Therefore, we only considered the AND invocations in the rate propogation algorithm. The
rate assignment algorithm is shown in Algorithm 6.

Algorithm 6 Algorithm for rate assignment.

INPUT: software model in graph M =< C, L >;

rate specifications for each input R;
OUTPUT: component C' with rate assigned.
BEGIN

1 foreach c€ C do c.color = WHITE;
2 R < sort(R,ascend);

3

4 foreach r € R do dfssearch(c,,r);

)

6 return C;

7 END.

dfs_search(c,,r)

8 BEGIN

9 c¢p.color +— GRAY;

10 c¢r.rate < 7

11

12 foreach c € {immediatesucessorofc,} do

13 if c.color = WHITE then dfssearch(c,r);
14 ¢y.color +— BLACK;

15
END.

Algorithm 6 first sorts the input components in ascending order according to their rates, and colors
all components in WHITE indicating not visited. From each input component with the highest rate in
current set, the algorithm colors the component in GRAY to indicate an initial assignment, and assigns
the rate as the input rate of the transaction. The algorithm then tracks forward every component
reachable from the input component, and assign its rate the same as its predecessor. If the visisted
component’s color is other than WHITE, the component has already been assigned a rate. The algorithm
then tracks backward and finalizes the color in BLACK. As the algorithm starts from the lowest rate
and returns when a component has been assigned a rate, a component shared by multiple transactions
with different rates is assigned the lowest rate. In the case that the component should be invoked upon
arrivals of the highest rate input, the input components should be sorted in descending order of their
rates. The computation complexity of Algorithm 6 is O(n + 1), where n is the number of components,
and [ is the number of links.
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Deadline distribution. The deadline distribution algorithm is used to determine the release offset
and relative deadline of the components within a transaction. The components in a transaction are
usually subject to precedent constraints, and the release times and deadlines of these components in
sequence should not be overlapped. Exploring such information can greatly help to determine an
effective and efficient schedule of the components’ executions.

The deadline distribution is performed after components’ allocations have been determined. After
this, whether the communication between two components is remote or local has been decided and can
be accounted in deadline distribution to obtain realistic values.

In this work, we adopted the basic deadline distribution algorithm in [14]. The algorithm takes a
system-level end-to-end deadline of a transaction, and distributes it over its constitute components ac-
cording to the precedent order of their executions. The system-level end-to-end deadline of a transaction
is user-specified and can be derived from the control design. Note the end-to-end deadline may or may
not be equal to the transaction’s period. To distribute the end-to-end deadline, the algorithm first
identifies a critical path, which is a sequential component execution following the precedent constraints.
The deadline is first distributed over the critical path. Given n. components and 7; communications
(typically communications between components on different processors with non-zero costs) with exe-
cution time e, for each component, and e; for each communication on the critical path P, an end-to-end
deadline D, the intermmediate release times r. and deadlines d. can be computed as follows:

Di(zcep ec+zleP er)

8= ne+ng

Te = dc—l (31)
de=r.+e.+s

In the above equation, a communication is treated the same as a component. s is defined as the
average slack for each component/link. A component/link ¢ — 1 represents the immediate predecessor
of the link/component ¢ on P. The release time of the input component ry = 0, and the deadline for
the output component d,, = D.

After the deadline is distributed on the critical path, the components on other paths can be assigned
using the second and third equations in Equation 3.1. The deadline distribution algorithm is given in
Algorithm 7.

The deadline distribution algorithm distributes the deadline for each transaction at a time. Suppose
there are T' transactions, the algorithm performs 7" loops to distribute all deadlines for all transactions.
In each loop, finding a critical path can be done through traversing the transaction graph that takes
O(n¢+1;) time for a transaction with n; components and [; links. The loops to assign release times and
deadlines for predecessors and successors visits all links in the graph, and takes O(l;) time. Since total
number of components from all transactions is n = ), ny and total number of links are [ = ), [, the
computation complexity of Algorithm 7 can be bound by O(I(n +1)).

3.2.3 Task formation

All the models we manipulated in the previous sections are at the component level. At this point, we
have allocated the components to their execution processors in the platform, and assigned the timing
properties for each oneem, including invocation rate, deadlines, and release times. To execute the
components accordingly, the operating system on the processor must determine the schedule of the
executions of the components allocated on it. Almost all of today’s commercial real-time operating
systems schedule the execution of the code in the form of threads/processes. This requires that the
components must be mapped to threads/processes to be schedulable by the target operating system.
We call this step task formation. A task is then a thread/process that can be individually scheduled
in the operating system. Although we can implement every component in the model as an individual
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Algorithm 7 Algorithm for deadline distribution.

INPUT: software model in graph M =< C, L >;

end-to-end deadlines of transactions Dy;
OUTPUT: M with intermediate deadline assigned to C' and L.
BEGIN
1 foreach transaction ¢ do
2 T+ C+H+1L;
3 P« find_critical _path(t);
4 s < compute_slack(M, D;);
5 foreach c € P do
6
7
8
9

if (¢ C)V((ce L)A(e.#0)) then

Te < dc—l;
de < Te+ec+ 8;
end-if;
10  end-for;
11 T+ T- P
12

13  foreach c€ T do
14 foreach ¢, = pre(c) do

15 de, < T¢;

16 T+ T —{c};

17 end-foreach;

18 foreach c; = suc(c) do
19 Te, < de;

20 T+ T—{c};

21 end-foreach;
22  end-foreach;
23 end-foreach;

24
25 return M;
END.

task, the resources can be used more effectively and efficiently if multiple components are grouped into
one task, since the resource consumptions for the RTOS managing tasks increase significantly as the
number of task increases.

The task formation is simply a process of grouping components on the same processor for all proces-
sors. Given component ¢ and an existing task 7, ¢ is merged with other components in 7 if all of the
follows are true:

1. Component i and 7 reside on the same processor;
2. Component ¢ runs at the same rate with 7;

3. Component 7 has either immediate predecessor/sucessor in 7, or has no precedent constraints with
any component in 7.

The first condition ensures the task boundary is within a processor so that it can be implemented as
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local RTOS thread/process. The second condition minimizes the number of tasks by merging compo-
nents with the same rate and at the same processor in one task, so consequently reduces the resource
consumption for task management. The third condition guarantees that two components in a sequential
path stay in different tasks if some components between the two components on the path is running as
a different task. For example, given a component chain a — - — b — - — ¢, if @ is in 7| on processor
Pi, and b is in 79 on Ps, ¢ can not be merged with @ in 7; even if ¢ is allocated on P; and runs at the
same rate with a. The algorithm is shown in Algorithm 8.

Algorithm 8 Algorithm for task formation.

INPUT: software model in graph M =< C, L >;
component allocation C(F;);
OUTPUT: task set 7.
BEGIN
1 foreach processor P; do
2 foreach c € C(F;) do
if 37; has the same rate of ¢ that satisfies all conditions then
Ti < G
else
T; < new_task();
rate,, < Tc;
Ti < G
end-if-else;
10 weetr, < weetr, + We;
11  end-foreach;
12 end-foreach;
13
14 foreach 7; do
15 if 3(¢; — Cj) (e €T) A (Cj € Tj) then
16 I (1 = 75);
17 end-foreach
18 return < 7,1 >; END.

© 00 O Ui W

The algorithm checks the components on each processor. Since the components are partitioned in
disjoined sets when allocated to processors, this is equivalent to checking every component once. The
condition check in the if statement searchs existing tasks (can be more than one task for each rate) to
find a matching rate, which takes logt time for ¢ number of tasks sorted by their rates. The condition
check also checks if there is immediatie connections with the components in the task, which takes up to
link number /. So the computation complexity of the algorithm is O(n(logt +1)), where n is the number
of components.

After tasks are formed, the transactions in the system are now represented as a task graph instead
of a component graph. Given the component graph is directed acyclic graph, the obtained task graph
must be a directed acyclic graph using Algorithm 8. The task containing an input component is then
called input task of the transaction, while the task containing an output component is called output
task.
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3.3 Resolving task dependencies

The task dependency resolution was designed to transform a system with dependent tasks into one
with independent tasks so that the scalable task allocation and scheduling algorithms can be directly
applied. Previous research has indicated that the allocation and scheduling of a system with independent
tasks has much lower computation complexity than that of a system with dependent tasks. Therefore,
by eliminating the precedent constraints among the tasks, we can obtain a scalable algorithm to allocate
and schedule large-scale systems.

Our approach of resolving task dependencies is based on inserting shared buffers between pairs of
dependent tasks. Given a task system A with inter-communicating (hence inter-dependent) tasks 7, we
modeled A as a directed acyclic graph (DAG) G 4, where a node represents a task and a link represents
the dependency between two tasks. For any two tasks 7; and 7; with a directed link 7; — 7;, we called
7; an immediate predecessor of 7;, and 7; an immediate successor of 7;. To transform the system A
to an equivelant A’ with the same functionality and end-to-end timing performance, but independent
tasks, A’ must have the following properties:

1. the size of the task set are the same before and after transformation, i.e, |7/| = |7|;
2. if ; € 7, then 7; € 7/ but may have a different rate and deadline;
3. all 7; € 7/ are independent; and

4. if there exists a link /;;: 7, — 7; in A, there is a buffer B;; that is written by 7;, and is periodically
read by 7;.

In the transformed A’, successor tasks are decoupled from their predecessors as they need only access
to the buffers. Specifically, the explicit triggering mechanism used to meet the precedence constraints in
the original system is replaced by an implicit trigger stored and updated as flags along with the shared
buffers. For any dependency 1; — 7;, 7; periodically checks B;; for updates from 7;. The successor
tasks decide when to process their input buffers based on these flags. The correctness, with respect to
data-dependency, of the system is therefore preserved, and A’ functions the same as the original A.

Figures 3.3 give an example system with dependent tasks. The task graph of the original system
contains 4 tasks, where T3 depends on the outputs of both 77 and 75, and T, depends on the output
from T3, as shown in Figure 3.3(a). The system is subject to two timing constraints Cy4 and Co4. The
runtime scenario of the origianl system is shown in Figure 3.3(b).

T1 T2
Processor 1 \
Trigger T3
o \ | T3
Processor 2 T
T3 becomes ready to execute

(a) Original task graph (b) Scheduling with dependencies on 2
with 4 tasks. processors.

Figure 3.3: An example system with dependent tasks.

The system can be transformed into one with independent tasks using shared buffers, as shown in
Figure 3.4(a). The transformed system contains the original 4 tasks and 3 shared buffers. The polling
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rates p3 and p4 are assigned to Té and Ty such that constraints Cy4 and Cyy are satisfied. Tasks are
triggered independently, as shown in Figure 3.4(b).

T1 T2
p4 Processor 1
[ [ T3
Processor 2 - polliig _—
T3 becomes ready to execute
(a) Task graph with independent tasks (b) Schedule of transformed tasks on
after transformation. 2 processors.

Figure 3.4: The system after transformation using shared buffers.

In addition to preserve the functions, the transformation from A to A’ must also be done in such
a way that the schedulability and timing constraints of the original system A are preserved in A’. In
other words, if A’ is schedulable, then so is A. 2 In our approach, this is achieved by deriving the
polling periods for 7" based on A’s timing constraints and schedulability considerations. A polling rate
is the frequency at which a successor task is invoked to check the update of the shared buffer. As
the transformation only changes the internal triggering mechanism of the dependent tasks from event-
triggered to time-triggered, only the timing constraints of successor tasks need to be modified. The
timing properties of the rest of the system like the input rate of data into the system, or the output
rate of data to the environment remains the same.

3.3.1 Derivation of polling rates

The polling rate derivation is a process of reassigning the invocation rates of the successor tasks in
a way such that timing and schedulabiity constraints are met after the transformation. The basic idea
for deriving the polling rates is to compute the maximum allowable processing time for each successor
task. Given an end-to-end timing constraint Cy4, the maximum allowable processing time pt; for a task
7; is the largest duration 7; may execute while C'4 is met. This includes the delays of 7; from its buffer
updat until the buffered data is processed. If there are n sequential tasks, the sum of pt; for these tasks
should be less than C4. We can then ensure C'4 is met if the maximum delay incurred in executing 7;
is within its maximum allowable processing time. If we assign the maximum allowable processing time
as the polling period of the task and makes the A’ schedulable, we can ensure every invocation of 7;
completed within the maximum allowable processing time.

The maximum allowable processing time of task 7; consists of the worst-case update-detection delay
of 7; and the worst-case execution time of 7;. For any successor task, the worst-case update-detection
delay occurs when the shared buffer is updated immediately after the task checks it. Since the task can
only detect the updates at its next invocation in such cases, the delay can be at most the duration of
one task’s period. Therefore, the polling period at which a successor task in A’ should be running to
satisfy C'4 can be expressed as:

polly, + 1y, < d. — s (3.2)

where poll,, is the task’s polling period, 7, is the response time (also called the completion time), d,, is
the deadline for execution of 7;, and s, is the start time of 7;. The term d,, — s, defines the maximum

*Note the condition is only sufficient, meaning that if A’ is not schedulable, A may still be schedulable. This implies
that our approach introduces additional overhead.
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allowable processing time for 7;. s, can be derived from the deadlines of 7;’s predecessors as:

sy, = max{d;, : 7} is an immediate predecessor of 7;}. (3.3)

Derivation of polling period of 7; using Equation 3.2 requires the response time r, of 7;. The
response time 7., depends on the allocation of 7;, which, in turn, may depend on the polling period for
each task. This circular dependency between the response time and the polling period for each task
can be resolved by iteratively determining solutions for both. We can set the initial polling period of
7; to the period of the transaction, performing task allocation, and obtaining r,,. We can then check
Equation 3.2 to determine the poll,,. For those tasks that fail the check, their polling periods should
be revised systematically followed by task reallocation. This process of polling period assignments and
task allocation should be iterated until all tasks in 7 satisfy Equation 3.2.

If some task 7; in 7 does not satisfy Equation 3.2, it indicates that the worst-case update-detection
delay of 7; is longer than required and should be reduced. Reducing update-detection delay of 7;
consequently reduces its polling period. To reduce the update-detection delay, we defined an “excess”
as the amount of time by which 7; exceeds its maximum allowable execution time. The polloing period
of 7; can then be modified using Equation 3.4:

excess; = pr, + 1, —dr, + S

poll. = poll;, — excess;/n. (3.4)

where poll’. is the new polling period of 7;, and excess; is defined as the amount of time by which 7;
exceeds its maximum allowable execution time. n is a predefined constant to determine the step size
of the adjustment. The larger value n is, the smaller each adjustment is. However, since tasks’ periods
have no effect on the scalability of the allocation and scheduling algorithm for fixed-priority system,
different values of n results the same the scalability of the allocation and scheduling algorithm. Thus,
we randomly chose n = 2 in this work to allow large adjustment at each step.

Algorithm 9 provides the algorithm for polling period derivation. Since shortening the polling periods
increases the system workload in each iteration and will eventually lead to an unschedulable task set,
the algorithm is guaranteed to terminate in a finite number of iterations.

After polling periods are derived for all successor tasks, schedulability analysis is required to ensure the
system-wide timing correctness. Since successor tasks have variable execution times —short execution
times without buffer updates and have long execution times with buffer updates, the schedulability
analysis algorithm using worst-case execution times can not provide accurate solution. To be able to
apply existing schedulability analysis algorithms, we replaced each successor task by two tasks: one
dedicated to buffer polling with the execution time for only polling operations, and the other to data
processing with the execution time of data processing. The task for data processing is only activated
when the shared buffer is updated, and is released with a fixed offset that equals to the polling period
to ensure the data availability. These two tasks can then be considered as independent tasks in the
schedulability analysis.

3.4 Analysis and verification

After the runtime model is generated, we must verify whether all timing constraints can be met.
Although the runtime system is generated with consideration of meeting all timing constraints, these
constraints may be violated due to the resource contention, scheduling policies, and overheads of RTOS.
To verify that the resources are sufficient for the designed ECSW, and timing constraints are met for
all transactions, the analysis must be applied for every resource and every task.
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Algorithm 9 Algorithm of iterative polling period derivation.

INPUT: task set 7;
a set of processors P;
end-to-end timing constraints Cy
pollypresn: user specified polling period threshold for tasks in 7.
OUTPUT: task set 7 with successor tasks assigned a polling period poll,,.
BEGIN
distribute timing constraints C4 over each task in 7 in A.
foreach 7; € 7 do
polly; = pr;
end-foreach;
Loop:
allocate and schedule tasks 7/ on processors P — Alloc;
if (7; € 7 can be successfully scheduled) then
if (7; satisfies Equation 3.2) then
return success ful, {poli., };
10 else

© 00 ~J O Ui W N =

11 foreach 7; fails Equation 3.2 do

12 decrease poll;; using Equation 3.4;
13 if poll;; < pollipresn then

14 return failure;

15 end-foreach;

16 goto Loop;

17 end-if-else;

18  end-if;

19 else return fail;

END.

In this work, we performed both local analyses and global analyses. The local analyses focus on
individual processor and each task. The metrics to check include the CPU usages for application
tasks, system overheads, and unused resources. The local analyses also provide timing details of each
task, including its response time and times of being preempted. The global analyses focus on end-to-end
response times for transactions including executions on involved processors and network communication
delays.

To perform these analyses, we need to determine the scheduling policy first. In this work, we as-
sumed all the tasks are scheduled using a static priority-based preemptive scheduler. Such a scheduler
is the most commonly scheduler implemented in current commercial and research RTOS such as Vx-
Works/OSEKWorks, QNX, and RTLinux. Schedules generated using other static scheduling policy,
such as the cyclic executive in Time-Triggered Architecture, can be mapped to a schedule using the
priority-based preemptive scheduling policy [4].

All analyses are based on time demand analysis of the system. The timing demand analysis is also
called busy period analysis, and it is a powerful tool in real-time scheduling theory. We chose timing
demand analysis for the analysis and verification because the timng demand analysis is applicable for
more general cases with less restrictions compared with traditional schedulability analysis methods like
rate-monotonic or deadline-monotonic schedulability analysis.
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3.4.1 Local schedulability analysis

The local schedulability analysis computes the response time of every task on every processor, resource
utilization for every activity in the system, and available resource left on each processor. The algorithm
is a modified version of the algorithm developed by Harbour, Klein, and Lehoczky [10] to include
underlying supportive system overheads, such as overheads for timer signal processing and context
switches. These overheads can consume significant portion of resources according to our experiments.
This algorithm is chosen because it supports the analysis independent of how the priorities of tasks are
assigned, whether precedent constraints exist, and the relations between deadlines and periods.

The basic concept in the local analysis algorithm is computing the worst-case phasing for every task.
To do so, the components in each task can be viewed as subtasks whose priorities can be assigned inter-
nally based on their intermediate deadlines and the task’s priority. This means for a given tasks 7; the
priorities of its subtasks in 7; are non-decreasing in their execution order. Such assigned priorities satisfy
the canonical form assumptions of the algorithm in [10]. The algorithm is outlined in Algorithm 10.

Algorithm 10 Algorithm for local schedulability analysis.

INPUT: runtime model M, =< 71,1 >;
OUTPUT: schedulability decision (YES/NO);
resource consumptions U, U;;
response time resp;.
BEGIN
1 foreach processor P do
2  foreach task 7; on P do

3 transform every task into canonical form;

4 determine task set that can preempt or block 7;;

5

6 compute worst-case phasing from all tasks other than 7;;

7 determine the number of instances of 7; in its busy period, NV;;
8 for 1 to N; do compute resp,;;

9 resp; maa:{resp’ﬁi : 1<k <N}

10 if resp; > D; then return NO: unschedulable;

11 Ui porigts

12 end-foreach;

13 Up = Zﬂ‘ Ui + Usverhead;

14 end-foreach;

15 return YES: schedulabe, Uy, U;;
END.

In this algorithm, the examined task is first transformed into a canonical form where the priority of
the first subtask is the lowest among all subtasks, denoted as p;. To determine the task set that can
preempt and block an examined task 7;, we classified all tasks on the same processor P into 5 types:

e Type 1 task set contains tasks that can preempt 7;. All subtasks of any task in this set have higher
priorities than p;, and can preempt 7; multiple times.

o Type 2 task set contains tasks with some subtask that has a higher priority than p;, followed by
subtasks with lower priority than p;. A task in this set can preempt 7; only once.
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o Type 3 task set contains tasks with some subtask with a priority higher than p;, followed by some
subtask with lower priority than p;, then a subtask with a higher priority than p; again. A task
in this set can introduce both one preemption and one blocking to 7;.

e Type 4 task set contains tasks with some subtask with a lower priority than p;, followed by a
subtask with a higher priority than p;, then a subtask with lower priority than p; again. Only one
task in this set can introduce blocking time to ;.

o Type 5 task set contains tasks with subtasks whose priorities are all lower than p;. The tasks in
this set can be ignored in the analysis, as they have no effect on 7; execution.

The worst-case phasing happens when 7; initiates the 7;-level busy period. The worst-case phasing
can therefore be computed using the blocking and preemption times caused by other tasks. According
to the classification of tasks, we recorded the blocking time introduced by Type 3 and Type 4 tasks,
and chose the maximum one as the blocking time B;.

To include the overheads of underlying system, specifically timer overhead and scheduling overhead, 3
we modified the original algorithm as follows: given a system running with timer resolution R, the
overhead of a timer signal processing §, and scheduling overhead 7 for each context switch, an additional
task 7, should be added to the task set with the highest priorty, period P, = 1/R, and execution
time e; = . The context switch overhead is included in the preempting task execution time in the
computation. The length of 7; busy period can then be derived using Equation 3.5.

L; = min(t=B; +
t
. 2
> lp (et

T, ETypelUT ype2

Z (ex +2n) +

T EType3UT yped
t
[E e =1) (3.5)

The number of instance of 7; in 7 — i-level busy period can then be computated using Equation 3.6.

N = f.ﬂ (3.6)

The response time of the kth instance of 7; can be iteratively computed from its first subtask until
the last subtask using Equation 3.7.

respij+1(k) = min(resp;;(k) +

t Tesp;;
S U1 = 1) e+ 20)] +
T ETypel N\T'ype2 p p

) t resp;q
S min(l 5]~ [—52) - (e +2n) +
Tp €T ype2AType3 p p

eij_H = t) (37)

3Scheduling overhead in this work include both overhead for scheduling algorithm to decide which task to run and the
context switch overhead to actually save the old task’s environments and initialize the new task’s environments.
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Note in Equation 3.7, the j is the indicator of subtasks in 7;. The task set of T'ypel, 2,3,4,5 change
at each iteration. This is because when the subtask j is processed, and j + 1 is examined, the priority
of the substask may increase, and therefore may make some tasks originally in Type 1 (or 2 or 3 or 4)
moving to lower priority types that won’t preempt the subtask. For the first subtask of 7;, its response
time resp;; can be computed by:

respi1(k) = min(B; +

> Tl (et

Tp€Typel AType2 ~ P
Z (ep +2n) +
TpEType3NTyped
(k—1)-e;+ey1 =1t) (3.8)

After obtaining the resp;, (k) for the last subtask n of 7;, we can decide the schedulability by checking
the following condition:

maz((k — 1) - P + D; — respin(k)) > 0 for all k (3.9)

If Equation 3.9 is met for all tasks on all processors, the system is schedulable, and the algo-
rithm returns a YES answer. The worst-case response time of 7; is then computed as resp; =
maz1<k<n,(respin(k)). The utilization of each task can then be computated as U; = #, while the
total processor utilization of processor P is Uy = _  cp U;. The resource consumed by the OS service

can also be derived by:
resp;

p;

Us=R-6+ > |

T;€H;

]-2n

If Equation 3.9 is not satisfied, the algorithm returns NO for unschedulable. By checking the re-
sponse times and utilizations of individual tasks and services, the designer can pinpoint which activity
consume more resources, and can modify design to reduce it accordingly. The computation complexity
of computing the response time of 7; during its busy period is O(n?L/(1 — U)), where n is the number
of tasks on the processor P, L is the ratio of the longest period to the shortest period in the task set,
and U is the utilization of the task set. If there are m processors, the complexity is O(mn2L/(1 — U)).

The delays of the communication links can be computed using the same algorithm by treating each
message transmission as a task/subtask in the system.

3.4.2 Global timing analysis

The global timing ananlysis is required to check the satisfaction of the end-to-end timing constraints.
The local schedulability analyses study only the tasks on a given processor, and verifies whether the
given deadlines for the task set can be met. However, since the information processing flow in a
large scale embedded system like mission computing in weapon systems and automotive vehicle control
typically involve consecutive tasks running on different processors through different communication
links, satisfying schedulability and timing constraints on each and every processor does not guarantee
the end-to-end timing constraints of information processing flows can be met. This is because the
interferences among different transactions can cause resource contentions on different processors and
communication links, therefore results in violating the end-to-end timing constraints of the chain. To
this end, we adopted the end-to-end schedulability analysis algorithm based on [26] for timing analysis
of end-to-end task chains after local schedulability and timing constraints are verified.
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The method for the global end-to-end timing analysis is still busy period analysis. Instead of com-
puting only busy period of a task on one processor, we must compute the busy period of a transaction
involving all tasks across all participating processors, and the interferences introduced by tasks of other
transactions sharing these processors. In the global timing analysis, we treat the consecutive tasks on
the same processor as one in the analysis. We further assumed that the tasks of a transaction on differ-
ent processors sychronize their executions through modified-phase-modification procotols (MPM) [26].
MPM is a dynamic task release control protocol. In the MPM protocol, a task instance is triggered by
a timer signal if its predecessor completes before a time bound. Otherwise, the task is triggered directly
by the completion signal of its predecessor. As the task synchronization across different processors re-
lies on message passing in current RTOSes, MPM can be easily implemented by modifying the message
receiver process to control the release time of the synchronized task.

The basic idea of the global end-to-end timing analysis algorithm is to compute the worst-case
response time of every transaction, and compare it with the end-to-end deadline. According to the
MPM protocol, the release interval between any two consecutive instances of a task 7; is no less than
the task’s period P;. Therefore, we treated all tasks in a transaction as periodic tasks whose periods
equal to the transaction’s period in the worst-case response time computation. In such a case, the worst-
case response time of a transaction 7; is the sum of the worst-case response times of all its constitute
tasks on every processor.

An issue of the algorithm in [26] is that the aglorithm can only analyze a transaction with a straight
chain of tasks. However, in our model, the task graph generated by Algorithm 8 may contain fork- and
join-branches, and tasks on different paths can be running on different processors in parallel. Therefore,
instead of simply adding all tasks worst-case response times to obtain the transaction’s worst-case
response time, we chose the longest execution path of the transaction, and summed the worst-case
response times of the tasks on the longest execution path as the transaction’s worst-case response time.
Note the communications between tasks were also considered in the computation of the transaction’s
worst-case response time. Since the communications are triggered by the tasks, and we assumed the
messages are only sent at the end of a task computation (last operation in the task) and are only
received at the beginning of a task (the first operation of the task), we modeled the communications as
dependent tasks that are successors of message generation tasks and predecessors of message reception
tasks.

The global timing analysis algorithm is outlined in Algorithm 11.

Algorithm 11 first computes the worst-case response time of every task in an examined transaction
T;. Since a task is statically allocated to one processor, the worst-case response time computation is
exactly the same as it is in the local schedulability analysis. So the computation can be done using
Equation 3.5 for L, computation, Equation 3.6 for N,, and Equation 3.7 and 3.8 for resp;,. After
obtaining the worst-case response times of all tasks in 77, we used resp;, as a weight for each task in the
task graph of T;, and find a path with the maximum weight as the longest path LPr,. The worst-case
response time respr, of T; is then the sum of tasks’ worst-case response times on LPr,. respr, is then
compared with the specified end-to-end deadline Dr;. If respr; is longer, the global timing constraints
is violated. The designer needs to make changes to reduce the end-to-end response time of T;. If every
transaction completes all its tasks before its end-to-end deadline, the algorithm returns a Y ES decision
with the worst-case response time for every transaction, indicating the global timing constraints are
met with the current system configuration.

3.5 Automatic design refinement
Automatic design refinement adjusts the timing and scheduling parameters of tasks in the runtime
model in order to meet the timing and resource constraints when the system analysis returns with fail
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Algorithm 11 Algorithm for global timing analysis.

INPUT: runtime model M, =< 71,1 >;

OUTPUT: decision on meeting end-to-end deadlines (YES/NO);
worst-case response time respr; of transaction 7j.

BEGIN

1 foreach transaction T; in M, do

2 foreach 7; — 7; €l do

3 map [ to 7; with delays as e; and period of 7; as period of 7y;

4 T; < 13

5 end-foreach

6

7

8

9

foreach 7;, € T;: 1 <p <m do
compute worst-case phasing from all tasks on the same processor P;
compute the worst-case 7;)-level busy period L;

10 determine the number of insteances N, of 7;, in its busy period Ly;
11 for 1 to N, compute resp;p;

12 Tespip < ma:c{respfp 1<k <Np};

13 assign weight of 7;, : w;, < respip;

14  end-foreach

15

16  LPr, < findjongestyath(T;, wip);

17 respr; < ETpELPTi T€SPip;

18  if respr, > Dr, then return NO, fail;
19 end-foreach

20
21 return YES, respr;
END.

results. As discussed in previous section, when both local schedulability analysis and global timing
analysis return Y ES, the system is schedulable, and all timing constraints are satisfied with the given
system setup — processors contain components and tasks, priorities and execution rates assigned to
components and tasks, and their release offsets and deadlines. The software can then be coded ac-
cordingly for the target for implementation. However, if the analysis returns with NO results, some
modification must be made before the software can be implemented. In general, the change of any one
or more system design parameters of the designed ECSW, such as replacing components with ones re-
quiring less resource (shorter execution time or shorter message), reorganizing the software architecture
with more parallelism and/or fewer communications and dependencies, relaxing the timing constraints,
adding more resources (increase number and/or capacities of processors and links), and choosing differ-
ent scheduling policies and priority assignments, may lead to satisfaction of timing and schedulability
constraints. Although many of these changes requires human intervention, we can focus on only a small
number of factors to alter, and use a guided-search to iteratively refine the results at each step in hope
to find a feasible solution.

In this work, we considered only approach of refining tasks’ rates and priorities automatically in order
to generate a schedule that satisfies all timing and resource constraints. Other approaches such as alter-
ing components with the same functionality but different performance, modifying software architecture,
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and changing the platform should be done by the designer manually.

Period transformation. Period transformation is a method used to alter the invocation rate of a
task. Such a transformation can change the resourse utilization of the system and response times of both
the task and the transaction that contains it. The effects of the transformation are reversal for resource
utilization and response time. Increasing the invocation rate makes a task execute more frequently,
therefore it may result in shorter response, but higher resource utilization. On the contrary, decreasing
the invocation rate can extend the task’s response time, but lower the resource consumption.

In this work, we tranformed tasks’ periods only when the system resources provided in the platform
are not sufficient. Insufficient resources are reflected in a fail result from local schedulability analysis
with some processor utilization greater than the specified bound. To reduce the resource usage, we
chose lengthening the task period if the local schedulability analysis fails. This indicates the insufficient
resource to schedule task set on a processor, thus requires to lower the resource utilization. This
approach works only under the assumption that the task’s rate can vary within a range. The control
quality may be better if a higher rate is used, but is acceptable at the lowest rate bound. The acceptable
rate range is usually specified as a Quality-of-Service parameter of the task.

There are two issues in the period transformation: (i) which task’s period to lengthen, and (ii)
by how much. In general, we should transform the period of the task that causes the system to be
unschedulable. Since the unschedulability is a combinational results of all tasks sharing the resources,
it is difficult to determine which one is the root reason. If the designer defines the importance of the
performance impact for each task, we can lengthen the period of the task causing the least performance
degradation. Hoever, it is usually difficult for a designer to determine such importance for each task. In
the case that the designer could not provide the information, we used the tasks’ utilizations to assist the
selection. We chose the one with the highest utilization to transform first. To determine the new period,
we adjusted the period linearly to minimize the performance impact of the task, as in Equation 3.10.

Pi—l—l :PZ—}-d

d= (P, — P.)/n] (3-10)

In Equation 3.10, we allowed the period transformed only between the task period upper bound
P, and current period P.. This is because the transformation is only performed when the task set is
unschedulable, and only periods longer than the current period may make the set schedulable. The
floor operations in d computation is to ensure obtained period is an integer. n defines the number of
steps to extend the period to its upper bound. Depending on different n, the transformation can lead
to a schedulable system that is faster or slower. In our implementation, n was chosen to be 5. If d =0
under n = 5, d was assigned to 1. The algorithm is shown in Algorithm 3.5.

In Algorithm 3.5, if a task 7; is unschedulable, only those tasks whose priorities are higher or equal to
7;, denoted as 7z, may be extended. This is because the lower priority tasks do not affect the execution
of 7;. Algorithm 3.5 increases the period of the highest utilization task in 7z one step at a time. After
each period adjustment, the task with adjusted period is put back to the task list as a new different
task in the furture adjustment. A different task may be selected for transformation in consecutive
loops due to the utilization of the task is lowered after the period adjustment. The hypothesis of
this transformation strategy is that minimum and even period extensions of multiple tasks result in
less control degradation than a large period extension of one task. If, for any unschedulable task, all
tasks in 7 are extended to their period upper bound, but still can not make the task set schedulable,
the algorithm returns a fail, indicating there is not sufficient resources to maintain the lowest control
quality. Human designer’s involvment is a must to address this.
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Algorithm 12 Period transformation algorithm.

INPUT: task set 7;

acceptable period range (P}, P,);
OUTPUT: task set with new period 7;
BEGIN
1 sort 7 in descending priorities;
2 foreach 7, unschedulable in order in 7 do
3 1 + {taw; : priority; > priority,};
4 while (unschedulable) A (g # 0) do
5 remove 7; with P, = P, from 7g;
6
7
8
9

Te < Ti  mazy, 5 Us;
extend P, according to Equation 3.10;
analyze schedulability of 7;
end-while;
10  if unschedulable then return fail;
11 end-foreach
12 return 7; END.

Priority adjustment. Another method to automatically refine the system design in order to make
an unschedulable system schedulable is adjusting tasks’ priorities. Period transformation can only
be used when the lower and upper bounds of tasks’ periods are specified. As mentioned before, it is
difficult for the designer to accurately determine such bounds for all tasks while still meeting the control
requirements. In such a case, the priorities of tasks are only parameters we can alter automatically and
effectively. The tasks’ priorities in a system are usually assigned according to some strategy such
as functional importance and timing attributes (e.g., rate-monotonic assignment, deadline monotonic
assignment). In a system using a preemptive fixed-priority scheduling policy, a task 7; experiences
interferences from tasks with priorities higher than 7;. The long response time of 7; may be caused by
more tasks running at higher priorities than 7;. Since different tasks have different timing constraints,
it is possible to raise the priority of 7; to shorten its response time, and consequently meet its timing
constraints, while still maintaining the satisfaction of timing constraints of other tasks. Our priority
adjustment algorithm was developed for this purpose.

The automatic design refinement with priority adjustment is applicable only to the cases that all
processors’ utilizations are less than their bounds, but the end-to-end response time of some task is not
met. In such a case, the platform provides sufficient resources, and the violation of timing constraints
may be caused by inproperly assigned priorities.

The method of priority adjustment uses simulated annealing technique [17, 16]. Simulated annealing
is a heuristic search with a predefined energy function. At each step, only a solution that reduces the
value of the energy function is examined. Heuristic search of the solution is essential in this domain
because (i) a large number of tasks exist in the runtime model, therefore we need a scalable solution; and
(ii) there are information dependencies among tasks within a transaction and across transactions. This
implies that adjusting priorities of current task assignments so that the task set become schedulable
is as difficult as finding a priority assignment to make the task set schedulable from scratch, which is
NP-hard.

For a given task set with some timing constraints violated, the priority adjustment chooses a proper
task and adjusts its priority. Similarly, as in the performance transformation, there are key issues: (i)
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which task we should choose, and (ii) what the new priority should be. There are two strategies on
choosing which task to adjust. Given a transaction 7' whose end-to-end deadline is not met, we can raise
the priority of some task in T', or lower the priorities of some high priority task in transactions other
than T, so that the task of 7' can run with less interference from other transactions on each processor.
In this work, we chose to raise the priority of a task in a transaction with a missed deadline. We only
chose the lowering strategy when all tasks of the transaction with missed deadlines run at the highest
priority on every processor. Among the tasks in an examined transaction T', we adjusted the priority
of a task 7; that satisfies:

1. 7; is on the critical path of T
2. the successor of 7; has a higher priority;

3. 7; has the longest response time among all tasks satisfy the previous 2 conditions.

To determine a new priority of 7;, we first convert the task set 7 to a canonical form [9] for each
transaction. The conversion ensures that the end-to-end execution order of tasks in a transaction is
maintained if the task set is still in canonical form after the priority adjustment. Since the priorities
of tasks in canonical form are non-decreasing along the task execution order, if we find a task 7; whose
priority p; is less than its successors p;;1, and adjust its priority no higher than p;;1, we can maintain
the task set in canonical form, and shorten the response time of 7; as a result of its priority increase.
This may consequently shorten the end-to-end resposense time of the transaction. In this work, we
chose raising the task’s priority by 1 at each time to minimize the impact to other transactions. Such
increment stops when the task priority equals to its sucessor’s.

To evaluate whether the new assignement yields a better response time, an energy function is in-
troduced. Considering both timing constraints and system overheads, our energy function is defined
as:

E = ki x max{resp(T;) — d(T;)} + k2 * Np_iever (3.11)

where E is the energy value of the new assignment; 7T; is the examined transaction; resp(7;) and
d(T;) are the response time and timing constraint of T, respectively; n,_jepe is the number of distinct
priority levels. k1 and ko are constants. They should be chosen in a way such that the first term and
second term are weighted the same in F.

The energy function in Equation 3.11 was evaluated for every priority adjustment, including the
initial assignment. If an adjustment results in a lower value of E, and all timing constraints are met
under the new priority assignment, the process stops. Otherwise, the adjustment continues with the
new assignment. On the other hand, if the E results in a higher value, we marked the task as priority
unchangeable, and selected another one.*

The termination of the process is determined by a feasible solution is found and neither energy
increases or decreases have been made for the last Ng adjustments. In our implementation, we set
Ng =3.

After each priority adjustment, we need to recheck the timing constraints and schedulability of the
system.

“In simulated annealing, it is possible that a non-solution point have less energy than a solution point. Theoretically,
we should allow a jump regardless to the energy increases. However, such a jump should be governed by a function which
is always decreasing so that the backward jumps are less frequent and finally approach zero after the initial stage. Since
we didn’t have such a govern function, we simply disallowed backward move.
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Chapter 4

Techniques for RTOS Measurements

As real-time operating systems (RTOSs) are maturing, most ESW tend to use the existing RTOSs for
runtime resource management. Similar to component modeling for application software, we modeled
an RTOS as an integratoin of a set of functional components, called services, each of which provides
a service to the application. To support the analysis of the final software, the performance character-
istics of RTOS services must be known. Although RTOS vendors provide some product performance
characteristics such as throughput, interrupt latencies, and context switch time, such information is
usually insufficient for ESW timing and schedulability analysis. System designers may need to measure
the RTOS performance to meet their domain modeling and analysis requirements. Such measurements
are expected not only to reveal the interested information of services, but also to be done systemati-
cally so that the measured results can be reused for various analyses of a family of applications. Since
most RT'OSs are released only as binaries, the measurements are expected to be done without source
code. Furthermore, the measurements should be made on per service basis since “services” are the basic
OS unit used in ESW integration. A traditional measurement method meeting these requirements is
benchmarking. However, benchmarks generally yield results dedicated to only a single, statically con-
figured workload on the system. Thus, multiple benchmarks must be run for all interested application
configuration, resulting in a costly duplication of measurement effort.

In this work, we developed an end-to-end measurement method based on a combination of mi-
crobenchmarks and synthetic workloads. The end-to-end (e2e) measurement is a run-time, sampling-
based method, which records the start time and the end time of an activity of interest as an external
observer. Such a measurement methodology is known to introduce the minimum intrusion into the mea-
sured system [18], and provide the performance results close to what the application will experience at
runtime. The e2e method can also uncover inter-service dependencies and performance metrics without
RTOS source code, and can be applied to any system-level service like middleware and some subsystem
services. Microbenchmarks [5, 6] are an effective method for measuring individual and independent OS-
level services without instrumenting the kernel. However, as typically used, they exercise the system in
a limited way that is not necessarily representative of an actual application workload. We derived more
realistic performance metrics by coupling the microbenchmarks with representative, domain-specific
synthetic workloads. Synthetic workloads allow the measurements to be taken under conditions close
to the real applications with representative resource usage and interaction patterns. Through such
synthetic workloads, our measurements can cover most frequently-used application configurations and
interaction patterns so that the results can be reused to analyze a family of applications.

This developed technique of measurements has been applied to the performance measurements of
two fundamental RTOS services, namely timing services and scheduling services. The performance
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characteristics of a service are defined as a set performance metrics for the measurements. The mea-
surements are made on selected RTOSs and under varying workloads used for both OEPs. Specifically,
the platform we measured included QNX on Intel Pentium processor (experiment platform for both
Boeing OEP and Automotive Vehicle-to-Vehicle control), RTLinux on Intel Pentium processor (candi-
date platform for Beoing OEP), and OSEKWorks on MPC 555 (experiment platform for Automotive
Powertrain Control).

Before design the experiments to measure the RTOS service metrics, we must understand how the
measurement results can be used. In this work, we assume the performance model of the designed
ESW can be constructed hierarchically, reflecting realization layers [2], as shown in Figure 4.1. The
performance of a component/subsystem at a higher layer depends on the interactions of the components
at the same and immediately adjecant layers, and the performance of components immediately below
it. This is because the components at the same layers and layers immediately above provide the
workloads for the system, while the layer immediately below provides the services. In this paper, we
treat all software components running on top of an OS as applications, although a finer-grained model
with more layers representing other system software, such as middleware, can be constructed in the
same way. With this modeling method, after the ESW is constructed hierarchically by integrating
components, and the performance characteristics of the constitute components are annotated to the
componnents, the performance model can be constructed immediately for analysis.

Application
Response time
Execution rate
Message delay

Application -7

Composition, behaviors and services
p

System Software
System Software | _|  Timer overhead and jitter

Timer, scheduler and communication Scheduling overhead and latenc)
Y Communication delays

|

Hardware Architecture Hardware Architecture
CPU and memory architecture "“~« Clock rate, CPI and pipeline stages|
Bus speed and width

Memory and cach speed and size

Figure 4.1: Hierarchical, analytical performance model.

This layered model facilitates our OS-level performance measurements and modeling because the
performance dependencies among components are broken down into layers. The measurements of OS
service performance can now be done for each service of interest individually with its possible usage
patterns in ESW. Performance model construction and analysis of embedded software will then rely
only on the measured performance of OS services and application functional design. In this paper,
the performance of OS-level services are measured directly, although it can also be derived from the
performance of hardware components and low-level OS services using, for example, Imbench [19, 6].

As with microbenchmarks, a set of experiments will be generated to measure each service. Since
the performance dependencies among components at different levels are broken down in our hierar-
chical/layered performance model, the measurements of OS service performance can now be done in-
dividually for each service of interest. The experiments of service performance measurements include
“representative” service requests and application configurations. The measured values will be collected
at the application level. Since the existence of design patterns in a given domain usually leads to a small
number of likely application configurations, synthetic workloads can be used to generate such represen-
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tative application configurations with good coverage. To consider the effects of hardware architecture,
our measurement will be applied directly to each combination of hardware and RTOS. Although the
measured results of service performance will be hardware-specific, techniques [19, 6] exist to break the
dependencies further.

In the following sections, we detailed our experimental design and measured results of timing service
and scheduling service on the selected platform. The discussion is intended to illustrate how the method
works and how to apply it. The applications of the measurement results in performance modeling and
analysis are discussed later in Chapter 6 with evaluations.

4.1 Design of Experiments to Measure Timing and Scheduling Services

We treated the timing service and scheduling service as a component in the system software layer in
Figure 4.1 to design experiments for measurements. To minimize the interferences from other activities
in the operating system, unnecessary services such as networking were turned off during the measure-
ments. Timing services include various clock and timer management mechanisms implemented in a
RTOS. The performance information for such a service is critically important to time-based activities
in ESW. Scheduling services, on the other hand, are essential for software execution. The performance
of such a service plays a key role in assessing the quality of the entire system. Timing and scheduling
services are the basic services required by all embedded control applications and are supported in all
RTOSs.

Since timing and scheduling services normally run as part of the RT'OS kernel at the highest priority in
the system, applications can experience large overheads and unpredictability due to these services. Such
overheads and unpredictability may cause problems on meeting the application-level timing constraints
and achieving stable control [33, 31]. Our measurements of timing and scheduling services should,
therefore, reveal how these overheads and unpredictability change with different system configurations
and application usages. When performance analysis needs to be done, such measured information can
then be used to construct an accurate performance model based on the given application usage and
system configuration.

To achieve such a measurement goal, we defined a set of performance metrics for overhead and
unpredictability which were reusable for the analysis of a family of applications. We then constructed
synthetic workloads to enumerate representative ways of using timing and scheduling services in ESW
applications and measured the service performance using microbenchmarks. The measurements were
done on the selected hardware and RTOSs. Note that the performance of different hardware and
RTOSs were not measured to compare and select targets. Instead, they were measured for constructing
performance analysis models for a family of applications that would be executed on these targets.
4.1.1 Measurement strategy
Measurement environment. The performance of RTOS services is hardware-dependent, as the
hardware provides the execution environments for the measured RTOS. Here we did not assume the
existence of methods for deriving RTOS service performance from the hardware performance and con-
figuration. Instead, we designed a set of experiments for each different combination of hardware and
operating system to obtain the performance of RTOS services directly. Since different RTOSs have
different implementations and provide different ways of using these services, it is important to learn the
effects of such differences on performance. This was one of the considerations during our decision on
the platform selection. Table 4.1 lists the hardware we used in the measurements.

The RTOSs we measured include QNX 4.24, OSEKWorks 2.0 and RTLinux 3.0. We assume that the
source code of these kernels is not available for the measurement, although the source code availability
of RTLinux 3.0 helps us understand the relationships among the OS services and can be used to verify
our analysis results. The collected data was temporarily stored in the main memory and was later
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Hardware | Processor Processor Memory Cache | Bus speed
type spped (MHZ) | size (MB) | size (KB) (MHZ)

Intel P133 | Pentium 133 32 128 66
Intel P166 | Pentium 166 32 128 66
ETAS MPC 555 40 2 - 20

Table 4.1: Hardware configurations for OS service measurements.

dumped to an appropriate host for analysis after the services used for storage were turned on at the
end of each measurement.

The versions of selected RT'OSs that we had could not be run on all the hardware platforms. The
configurations used for measurements are given in Table 4.2.

Hardware QNX RTLinux | OSEKWorks
P133 QNX-P133 | RTL-P133 -
P166 QNX-P166 | RTL-P166 -
MPC555 - - OSEK-MPC

Table 4.2: Testbed configuration for measurements.

Performance metrics. It is important to choose the performance metrics for a given OS service
carefully. The metrics are expected to be minimum in number, reusable for a family of applications, and
independently measurable. A minimum set of metrics is desired to reduce the cost of experimentation
and data collection while still providing sufficient data for the analysis. Finding a minimum set of
performance metrics for a service requires understanding of the analysis requirements, dependencies
among the OS services, and the relationships between different metrics. Reusability means that the
metrics are measured once and reused whenever the same environment is used, thus eliminating duplicate
measurements for the same environment for different applications with similar workloads and interaction
patterns. Finally, the independently-measurable metrics simplify the experiments and data analysis and
are more flexible when they are used in a performance model.

For the timing service, we measured clock overhead and interval jitter. The clock overhead is the CPU
time used to process each signal generated from the system clock. The interval jitter is the variance
in the length of time intervals. Interval jitter affects when periodic operations actually occur and is
thus a source of unpredictability in the system. For the scheduling sevice, we measured the context
switch overhead. The context switch overhead is defined loosely as in [6], which is the time taken from
terminating a task to starting execution of another ready task.

Measurement tools and analysis. Almost all current measurement methods [13, 18] are based on
monitoring events in the system under evaluation. Measurement tools using events can be classified
as event-driven tools, tracing tools, sampling tools, or indirect measurement tools [18]. Event-driven
tools record event occurrences. Tracing tools are similar to event-driven tools but record more system
information that can be used to uniquely identify each event occurrence. Sampling tools record the sys-
tem state at a fixed time interval instead of recording every event asynchronously upon its occurrence.
Indirect measurement tools are designed in an ad hoc manner, and used only when the metrics cannot
be directly measured. Among these tools, event-driven and tracing tools require instrumentation of the
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OS services, thus making the measurements intrusive. Although such tools can provide information on
detailed activities in the measured service, their intrusiveness makes the measurement results inaccu-
rate, while the details of activities inside the measured service are usually unnecessary for application
performance analysis. Indirect measurements are usually not used whenever direct measurements are
possible.

We use sampling tools to measure the specified performance metrics. The advantages of sampling
tools include: (a) no kernel instrumentation is required, (b) the measured performance is close to what
an application will experience at runtime, and (c) the least amount of intrusion is introduced. The
primary disadvantage is that they can only provide statistical results. Other tools, such as logging
events and generating traces, also exist, but they require instrumenting the service software and can
introduce perturbations in the performance. Furthermore, the sampling tool gathers information based
on external observations, which is suitable for use in application performance analyses since applications
are also external observers for RTOS services.

To obtain accurate timing values, our measurement tool sampled the processor clock cycles for each
measurement. Most modern processors are equipped with some registers dedicated to performance and
timing measurements. We used the hardware Time-Stamp Register (TSR) on the Pentium processor [12]
and the Time-Base Register (TBR) on the MPC 555 [20]. Both are 64-bit registers, initialized to 0 when
the system powers up and incremented by 1 upon every hardware clock tick at the CPU speed.

A statistical analysis method was used to process the measured data. For each experiment, 10,000
samples were collected during the normal execution. In addition to computing the average and standard
deviation of the measured parameters, we also found the maximum and minimum values as performance
bounds for each measured parameter on a given platform.

4.1.2 Experiment design

To correctly measure the performance of the selected services and make them reusable, we considered
application workloads in experiment design. The workload at the application level can make the mea-
sured services behave with different levels of performance. Measurements with workloads representing
various application usages can then make the measured results reusable. Since each of our measure-
ments corresponded to one combination of hardware and RTOS, the experiment design focused only on
generating application-level workloads. The workloads were designed to cover a set of representative
application usages after investigation many typical applications in machine control, avoinics mission
computing, and automotive engine control software.

Experiments for timing service measurement: the metrics of timing services included clock
overhead and interval jitter. The clock overhead depends mainly on the clock resolution. It can be
measured by executing a test program under different resolutions. Specifically, given a program P with
execution time e, the overhead of each clock tick can be computed using Eq. (4.1).

em=¢e+Ilp-o+1-0+Ir-0+... (4.1)

where e, is the measured execution time of P; e is the real execution time of P; and o is the overhead of
processing each clock tick. Each term I; - o represents the overhead of processing the clock ticks during
the time interval I; 1 - 0. I; is the coefficient of the i-th order overhead. Given the clock resolution r
when the measurement is taken, I; can be calculated recursively as:

e Iy-o
L=L), h=[>

[ (4.2)
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It can be seen from Equation (4.2), I; decreases exponentially. Thus, given any e, there exists a
positive integer n such that for any N > n, Iy = 0, as the overhead introduced by its previous term
will eventually be less then r. In the OS service measurements, the order of I; seldom exceeds 2 as e
is normally tens of milliseconds and the OS overheads are in the order of microseconds. Therefore, the
clock overhead can be computed as follows:

7] o

-0 (4.3)

= |

e
em:e-l-[;J-o-i-

<3

em =€+ L;J -0, (4.4)

Equation (4.3) can be used when the clock resolution is fine (normally less than 0.5ms) and/or the
execution time is long, while Equation (4.4) can be used for the other cases. According to Equation (4.3)
and (4.4), the clock overhead can be finally derived using following equation:

3 e/r] for fine resolution (4.5)
Tt otherwise
le/7]

{ \/4-7‘- le/r]-(em—e)+r2-le/r|—r-|e/T]
0=

The execution time e of P is necessary to compute clock overhead o. The measured execution time
em 18 usually larger than e since the clock signal will be generated regardless of whether it is used
or not, and its overhead is included in the measured e,,. However, since e, only includes the clock
overhead incurred during the e, measurements, we set the clock resolution far larger than e to obtain
a measurement ey that is close to the real e, as given in Eq. (4.6).

ey = e, for r>e (4.6)

In our experiment, the test program P was designed with an execution time of 10ms. The resolutions
used for the clock overhead measurements ranged from 100us to 100ms.! The selected clock resolutions
and methods to set them are given in Table 4.3.

RTOS method to set resolution | values (us)

QNX clock_setres() 100, 200, 400, 500,
600, 800, 1000, 10000,

100000
RTLinux rtl_setschedmode() 100, 200, 400, 500,
600, 800, 1000, 10000,

100000
OSEKWorks Rtcinit() 100, 200, 400, 500,
600, 800, 1000, 10000,

100000

Table 4.3: Resolution setting methods and values for the measured OS.

Interval jitter is a product of both the clock resolution and the application configuration. Clock
resolution affects jitter when the RTOS allows the intervals of activities and/or events to be to be not
integral multiples of the clock resolution. In such a case, the time of the end of the interval is rounded
up to the next clock tick. Interval jitter is affected by the application configuration in a number of ways:

!The resolution range was chosen based on the capacity test of a platform and the usage in applications.
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the number of independent timers, the interval patterns of these timers, and the priorities of tasks using
these timers. The timer resolutions used in our experiments were selected to be 500 us and 1 ms.2 The
workloads in our experiment were designed to produce different patterns of timer intervals and different
numbers of timers. Table 4.4 lists the values used in our jitter measurements.

values
500 ps, 1 ms
harmonic, non-harmonic
highest, medium, lowest
1, 2, 5, 10, 15, 20

Factor
clock resolution
timer patterns

task priority
number of timers

Table 4.4: Factors and values for interval jitter measurements.

A set of test programs was designed to perform the jitter measurements with the listed system
attributes. Since only one timer can be associated with a process/thread in all the RTOSs studied, we
needed up to 20 tasks in the experiments. Table 4.5 lists the attributes of every experiment task,® and
Table 4.6 shows the combinations of the tasks of measuring the performance with a different number of

timers.
period period period period
task id | (harmonic) | (non-harmonic) | priority || task id | (harmonic) | (non-harmonic) | priority
(ms) (ms) (ms) (ms)
1 1 2 1 11 80 83 11
2 5 5 2 12 90 89 12
3 10 9 3 13 100 103 13
4 15 17 4 14 150 145 14
5 20 19 5 15 200 211 15
6 30 31 6 16 250 239 16
7 40 43 7 17 300 217 17
8 50 49 8 18 400 395 18
9 60 61 9 19 500 513 19
10 70 71 10 20 600 613 20

Table 4.5: Attributes of experiment tasks.

Experiments for scheduling services measurements:

The metric for measuring scheduling ser-

vices was context switch overhead. We define the context switch time loosely as in [6], i.e., the kernel
time spent between when the current running task is terminated and when a new ready task gets to
run. The overhead includes the time to terminate the current running task and store its execution
environment, the scheduling time to select a new ready task to run, and the activation time to restore
the execution environment of the new tasks and give the control to it. These times can not be indi-
vidually measurable without kernel instrumentation. However, the total elapsed time taken from the
termination of one task to the start of a new task is measurable without kernel instrumentation and is

2These values were chosen by considering the fact that the clock overhead introduced by these values should be small
but potentially has a significant impact on jitter.
3In this table, a smaller number was used for a higher priority.
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test case 1 2 3 4 5 6
# of timers | 1 2 5 10 15 20
task in set | {1} or {10} | {1, 10} or | {1, 5, 10, | {1, 3,5, 7,| {1, 3, 4, 5, | {1, 2, 3, 4,
or {20} {1, 20} 15, 20} 10, 11, 13,7, 9,10, 11, | 5,6, 7, 8, 9,
15,17, 20} | 13, 14, 15, | 10, 11, 12,
17, 18, 19, | 13, 14, 15,
20} 16, 17, 18,
19, 20}

Table 4.6: Task combinations for test cases.

closer to what applications will experience at runtime. Therefore, such measurements are more suitable
and reusable for application performance analyses.

The context switch overhead depends on the scheduling algorithm, the number of tasks in the ready
queue, and the organization of the ready queue (e.g., sorted or unsorted queue). The priority-based
preemptive scheduling algorithm is the one supported by all current RTOSs and used most frequently
in ESW. So, our context switch overhead measurements were based on this scheduling algorithm. The
task set ranged from 2 to 20 tasks. The measurements were taken between two specially-designed tasks
in the task set. All other tasks, called interference tasks, were introduced only to change the length
of the ready queue to learn the effect of the queue length on the context switch overhead. The task
set was checked manually to be schedulable before the measurements. Table 4.7 shows these tasks and
their attributes used for measuring the scheduling service performance.

task id | priority | period (ms)
1 2 1
2 1 triggered by task 1
3-20 3 1

Table 4.7: Attributes of experiment tasks.

The measurement with the given task set was designed as follows: Task 1 ran periodically with 1 ms
period, and triggered Task 2 upon its completion. The priority of Task 1 was lower than that of Task 2,
but higher than all interference tasks. The TSR and TBR values were logged at both the end of Task
1 and the beginning of Task 2. Interference tasks ran with the same period as Task 1. Thus, every 1
ms, all tasks but Task 2 were ready and were moved to the ready queue. Since Task 1 had the highest
priority in the ready queue, it executed first. After its completion, Task 2 was triggered and was in the
ready queue. Similarly, Task 2 became the highest priority task and executed before any other task.
Thus, Tasks 3-20 only affected the ready queue length during the measurement, and did not contribute
any overhead to the context switch time between Task 1 and Task 2. The context switch overhead could
then be obtained from the difference between the pairs of sampled values of Task 1’s completion and
Task 2’s start. All interference tasks were assigned to the same priority since their priorities had no
effect on the measurements. Table 4.8 shows the number of tasks used for each measurement to learn
the effect of the ready queue length.
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test case |1 2 3 4 5

# of tasks | 2 5 10 15 20
task in set | {1, {1,2, | {1,2, | {1,2, | {1, 2,
2} 3-5} | 3-10} | 3-15} | 3-20}

Table 4.8: Task combinations for test cases.

4.2 Measurement Results
4.2.1 Results of clock overhead measurements

The measured execution times of the test program with different clock resolutions are presented in
Table 4.9. Note that the original measured execution times were represented as the number of clock
cycles, and we converted them to real wall clock times in Table 4.9.

platform statisics resolution (ms)
0.1 0.2 0.4 0.5 0.8 1 10 100
average 10.725 | 10.355 | 10.171 | 10.133 | 10.078 | 10.065 | 10.006 | 10.0005
QNX-P133 maximum | 13.871 | 11.845 | 10.875 | 10.674 | 10.261 | 10.154 | 10.015 10.012
minimum | 10.702 | 10.339 | 10.157 | 10.119 | 10.069 | 10.057 | 10.005 | 10.0002
std 0.085 | 0.043 | 0.018 | 0.014 | 0.008 | 0.006 | 0.002 | 0.0002
average 12.732 | 11.287 | 10.676 | 10.548 | 10.353 | 10.301 | 10.099 | 10.078
RTL-P133 maximum | 20.912 | 13.589 | 11.613 | 11.222 | 10.754 | 10.638 | 10.132 | 10.092
minimum | 12.714 | 11.298 | 10.671 | 10.544 | 10.359 | 10.298 | 10.098 | 10.078
std 0.249 | 0.012 | 0.061 | 0.025 | 0.015 | 0.013 | 0.0012 | 0.0005
average 10.876 | 10.397 | 10.188 | 10.144 | 10.082 | 10.063 | 10.006 | 10.004
QNX-P166 maximum | 12.738 | 11.207 | 10.483 | 10.348 | 10.188 | 10.121 | 10.011 10.009
minimum | 10.755 | 10.362 | 10.177 | 10.139 | 10.077 | 10.061 | 10.005 | 10.0002
std 0.063 | 0.055 | 0.008 | 0.008 | 0.004 | 0.004 | 0.004 | 0.0002
average 12.695 | 11.223 | 10.544 | 10.408 | 10.251 | 10.197 | 10.032 | 10.018
RTL-P166 maximum | 18.523 | 13.685 | 11.779 | 11.373 | 11.766 | 10.588 | 10.061 | 10.046
minimum | 11.901 | 10.889 | 10.443 | 10.337 | 10.212 | 10.169 | 10.030 | 10.015
std 0.249 | 0.012 | 0.061 | 0.025 | 0.015 | 0.013 | 0.0012 | 0.0005
average 23.755 | 14.156 | 11.782 | 11.398 | 10.871 | 10.705 | 10.149 | 10.097
OSEK-MPC maximum | 23.804 | 14.166 | 11.812 | 11.411 | 10.895 | 10.723 | 10.150 10.129
minimum | 23.689 | 14.108 | 11.754 | 11.353 | 10.836 | 10.664 | 10.146 | 10.090
std 0.0203 | 0.0217 | 0.0285 | 0.0236 | 0.0282 | 0.0261 | 0.0069 | 0.0173

Table 4.9: Measured execution times with different clock resolutions.

The clock overhead at each resolution was computed using Equation (4.5). In the clock overhead
calculation, we used the minimum execution time when the resolution is set to 100 ms as ey for each
case. The computed clock overhead for all test cases are shown in Figures 4.2, 4.3 and 4.4.

The measurement results showed that the clock overhead tends to decrease in general as the duration
between clock ticks increases. This indicates that a fine-resolution clock will consume more system
resources and may cause a schedulability problem, although such a clock may make the system more
responsive. The quantitative effects of clock resolutions are OS-dependent. For QNX, the normal
overhead is around 5 ~ 7us. But the maximum can be around 30us. RTLinux overhead is around 20us
with the maximum at around 60us. The overhead for OSEKWorks is around 60us except a higher
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Figure 4.2: Timing service overhead of QNX.

overhead of 70us is experienced when the clock resolution is set to 0.1 ms. We also experienced a
system hang when the clock resolution was set to smaller than 50us for QNX-P133, QNX-P166, 70us for
RTLinux-P133 and RTLinux-P166, and 80us for OSEKWorks-MPC. The measured overhead for QNX
and RTLinux is much less than the values required to make the system halt, while for OSEK Works is very
close. This indicates that the minimum available clock resolution depends on both OS implementation
and hardware configuration. This may be caused by simple kernel function and hardware configuration
of OSEKWorks-MPC platform, but some interrupt and timing related activities in the kernel.

The measurement results also showed that a faster processor can generally reduce the clock overhead.
As can be seen in Figure 4.2, using a faster processor reduces the maximum overhead, although it does
not improve the average and minimum cases. As for the results of RTLinux shown in Figure 4.3, both
average and minimum overheads were reduced on the P166 platform. The small difference between the
processor speeds of P133 and P166 along with other hardware factors (bus speed and cache size) may be
the reason why similar average and minimum values were measured for QNX and a small improvement
was seen for RTLinux. Due to the limited differences between P133 and P166 platform, the hardware
effects on the performance need further investigation.

Comparing the overheads of QNX and RTLinux on both platforms with those of OSEKWorks-MPC,
the clock overhead of OSEKWorks was almost constant for any given resolution, while the maximum
overhead for both QNX and RTLinux was significantly larger than average for any given resolution.
The less variant overhead for OSEKWorks may be due to the simple functionality of OSEKWorks [30]
and the flat memory structure of the MPC555 [20]. Both help reduce unpredictability during execution.
4.2.2 Results of interval jitter measurements

We then measured the effects of clock resolution, the number and pattern of timer intervals, and task
priorities on interval jitter. First, we were interested in how different clock resolutions affect the jitter of
different interval lengths. The measured results of interval jitter for QNX and RTLinux under different
clock resolutions were plotted in Figures 4.5 and 4.6. For OSEKWorks, we did not observe any jitter
for the examined clock resolutions.

According to the measured results, the interval jitter varied greatly from one OS to another. In
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Figure 4.3: Timing service overhead of Real-Time Linux.

QNX, the interval jitter increased as the clock resolution became more coarse, while the jitter for
RTLinux showed almost no change with different resolutions. The reason for this could be that QNX
uses a clock-based scheduler while RTLinux and OSEKWorks use event-based schedulers. The lack of
observed jitter for all experiments with OSEKWorks may also be the result of simple OS implementation
and predictable hardware architecture.

The results also showed that the interval jitter is independent of the interval length. This is different
from the conventional understanding that the interval should be some relative large multiples of the
clock resolution to overcome the jitter. The clock resolution had a distinct effect on the magnitude
of the interval jitter. As can be seen in Figure 4.5, the jitter was always bounded by twice the clock
resolution. Figures 4.5 and 4.6 also indicate that using a faster processor did not reduce the interval
jitter for an OS using a clock-based scheduler, but reduced the jitter for an OS using an event-based
scheduler.

Next, we studied the effects of the number of timers and interval patterns on jitter. The measure-
ments also included the jitter experienced by tasks with different priorities. Figures 4.7 and 4.8 plot
the measurement results where the intervals are harmonic and non-harmonic on QNX, respectively.
Figures 4.9 and 4.10 show the results of the same experiments on RTLinux, while Figures 4.11 and 4.12
show the results of OSEKWorks.

From these results, we first observed that the interval jitter increases with the number of timers in
the system for all measured cases. Such dependencies should be an OS property and independent of
hardware. Both cases of the same OS running on different hardware and different OSs running on the
same hardware showed the same tendency of interval jitter changes. These results suggest that reducing
the number of timers by combining tasks with the same intervals would reduce the interval jitter and
consequently improve the system performance.

The interval jitter experienced by tasks with different priorities were also significantly different. A
higher priority task experienced a smaller jitter, while a lower priority task experienced a larger jitter in
all our measurements. Such observations are independent of the number of timers and interval patterns.
Larger jitter experienced by a lower-priority task are likely the result of the cumulative effects of kernel
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Figure 4.4: Timing service overhead of OSEKWorks.

activities that have a lesser effect on higher-priority tasks.

The interval patterns also had significant impact on interval jitter, and the impact depended on the of
OS structure [15] and the number of timers in the system. Among the measured cases, jitter was almost
the same for both harmonic and non-harmonic intervals when there were a relatively small number of
timers (< 5). When the number of timers became larger, the jitter with non-harmonic intervals became
larger for QNX, but showed the opposite for RTLinux and OSEKWorks. This implies that the clock-
based OS implementation favors harmonic intervals, while the event-based OS implementation favors
non-harmonic intervals.

The “memory effects” of timer intervals found in our previous research [33] were also observed in
these measurements. However, the effects showed up differently: some longer intervals were followed by
a sequence of shorter intervals to compensate it or vice versa in our measurements, instead of a longer
interval followed immediately by a shorter interval to fully compensate it.

We also observed that a larger jitter was present for experiments on the P166 board with a faster
processor for both QNX and RTLinux. This is counter-intuitive in that a faster processor should yield
better performance. This could be either the hardware itself (e.g., different manufactures of some chips
and boards) or the implementation of RTOS (e.g., different rates of some OS internal activities on
different processors). This requires further investigation.

4.2.3 Results of context switch measurement

The context switches were measured under the different configurations as described in Section 4.1. To
learn the relationship between clock resolution and context switch time, we took measurements under
different clock resolutions; specifically, 0.5 ms and 1 ms, as the OS scheduler can be either clock-based
or event-based.

The measured context switch times of QNX, RTLinux, and OSEKWorks are shown in Figures 4.13,
4.14, and 4.15, respectively. For QNX, the average and minimum context switch times were not sensitive
to the number of tasks in the ready queue, but the maximum context switch times increased when the
number of tasks in the ready queue increased under a finer clock resolution. The difference between
the system with 20 interference tasks and the system without any interference tasks can be as high as

58



0.8

0.6

jitter (ms)

04

0.2

)

-0.4

Il max,interval=1ms
W min,interval=1ms
B max,interval=5ms
W min,interval=5ms
[ max,interval=10ms
= min,interval=10min
[ max,interval=20ms
[ min,interval=20ms
[ max,interval=50ms
1 min,interval=50ms

o i

300%. For RTLinux, both average and maximum context switch time increased as the number of tasks
in the ready queue increased under any clock resolution, while the minimum times remain the same.
Both average and maximum context switch times of the system with 20 interference tasks was twice as
high as those for the system without any interference tasks. The context switch time for OSEKWorks
showed little difference. These results imply that the context switch time depends heavily on the the
RTOS implementation, and at least, will not increase if the number of tasks is reduced.

We also observed that the clock resolution had a significant impact on context switch time. The
context switch time (average, maximum and minimum) with a small clock resolution was higher than
that with a larger resolution for QNX, while it was the opposite for RTLinux and OSEKWorks. This is
because the context switch time of a clock-based scheduler may be more sensitive to the clock overhead,
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while the event-based scheduler may be more sensitive to the resolution.
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Figure 4.10: Interval jitter for non-harmonic intervals on RTLinux.

W max,prio=H
W min,prio=H
I max.prio=M
[ min,prio=M
[ max,prio=L
1 min,prio=L

ffffff TN L L1 |
SRUES e L

interval jitter (ms)
(=]
T

L L
1 2 5 10 15 20
number of timers

Figure 4.11: Interval jitter for harmonic intervals on OSEKWorks.

62



interval jitter (ms)

Figure 4.12: Interval jitter for non-harmonic intervals

switch time (us)

3 4
2r 4
W max,prio=H
e W min,prio=H b
B max,prio=M
H =3 min,prio=M
[ max,prio=L
oF————— _ -_-‘:'DD I.I D | | I D | | I D | ] I [ min,prio=L i
ol ol g
-1r .
ok ,
_3F i
_4 . . . . . L
1 2 5 10 15 20

250

200

—~
<)
S

-
j=)
S

50

number of timers

on OSEKWorks.

|
[ |
|
]
]
=
=
—_
=
—_
]

average,0.5ms,P133
maximum,0.5ms,P133
minimum,0.5ms,P133
average, 1ms,P133
maximum, 1ms,P133
minimum,1ms,P133
average,0.5ms,P166
maximum,0.5ms,P166
minimum,0.5ms,P166
average,1ms,P166
maximum, 1ms,P166
minimum, 1ms,P166

5

NN

il

10

15

number of interference tasks

N

20

Figure 4.13: Measured context switch time for QNX.

63



80

T
Wl average,0.5ms,P133
B maximum,0.5ms,P133
minimum,0.5ms,P133
average, 1ms,P133
maximum,1ms,P133
minimum, 1ms,P133
[ average,0.5ms,P166
[ maximum,0.5ms,P166
=3 minimum,0.5ms,P166 4
[ average,1ms,P166
[ maximum,1ms,P166
[ minimum, 1ms,P166

701

50 h

switch time (us)
N
=)

30 B

20

] ‘ ‘ ‘ ‘ ‘ |‘ ‘ ‘|
0 II I II I I I I I
0 5 10 15

number of interference tasks

Figure 4.14: Measured context switch time for RTLinux.

200
W average,0.5ms
I maximum,0.5ms
W minimum,0.5ms
180 [ average,ms ||
[ maximum, 1ms
1 minimum, tms
160 b
1401 1
@ 120 1
2
£
= 100 1
<
S
% 80 M [ mill N DR
60 1
40 1
20 1

5 10 15 20
number of interference tasks

Figure 4.15: Measured context switch time for OSEKWorks.

64



Chapter 5

AIRES Tool Implementation

To facilitate the use of developed method and algorithms, we integrated all techniques described in
previous sections to form the AIRES toolkit to help ESW designers analyze timing and schedulability
and provide design assistance at multiple design phases along the tool chain. The AIRES tooklkit was
implemented in the Generic Modeling Environment (GME) [11], GME is a MS Windows-based software
tool and provides a graphic modeling interface for system modeling and analysis. Integrating with GME
allows the AIRES toolkit to interact with designers graphically.

The components of the ATRES toolkit include meta-models, analysis algorithms based on the meta-
models, and a built-in development process. The meta-model was constructed using GME built-in
meta-modeling mechanism, including model elements (called atoms in GME), their properties, visula-
bility, and constraints. These modeling elements are used as building blocks for creation of application
models. Analysis-related modeling information, such as transaction invocation rates, end-to-end dead-
lines, execution times of application components, and OS overheads, were specified for these models
when the designers created them. The implementation of our analysis algorithms needs to parse the
model, extract both structure and attributes of the components and models, and provide the analysis
results.

All developed algorithms were implemented as either interpreters in GME or standalone programs
taking the model files in a common exchange format. An interpreter, also called model interpretreion
in GME, is one of the mechanisms to access GME models and generate useful information if necessary.
There are two approaches to implement an interpreter: through COM interferces or through the Builder
Object Network (BON). The COM interface provides the means to access models, attributes and con-
nectivities through a GUI. The BON interface maps all modeling and modeled structures as a builder
object. A BON interface is implemented in C++, it provides users the flexibility of any implementa-
tions in C++4 programming language. We implemented our algorithms and developed methods using
the BON interface due to the fact that our algorithms and methods do not focus on GUI operations
but generating new information out of the models. The shortcome associated with using the BON
interface is that all the implementations are then meta-model-specific. Therfore, a new implementation
is necessary for a new meta-model. However, since the meta-model is relatively stable in a domain, the
meta-model-specific implementatin is acceptable.

Our algorithms were developed to form a tool chain with the built-in development process. In other
words, the output of one algorithm can be fed to another algorithm for the successive design phase as
its input. The built-in development process enforces designers to follow certain design steps to detect
design errors and refine the models at each steps during ECSW development. Following such a built-in
process ensures that the essential information for analysis are completed at each design phase, and some
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design details can be generated automatically with the consideration of multiple constraints. There will
be fewer design errors during the development, and thus the development time can be reduced. The
built-in development process is shown in Figure 5.1

functional timing and resource
/ constraints \ / constraints
Component Structural Runtime Timing
Modeling Model Model Schedulabity
Construction Construction Analysis
software TN software
architecture N

analysis .
‘ I task results & — Implementation
! | green decisions
platorm |~ I\ platform
components configuration /

Figure 5.1: The design process built-in AIRES toolkit.

refinement

In the built-in design flow, the components’ models must be constructed first. Component’s models
included both functional software components such as various data processing functions, device drivers,
and control algorithms, and platform components such as processor boards, I/O boards, networks, and
RTOSs. The performance characteristics of components should be measured and stored with their
models. Platform components can be profiled and measured beforehand using the techniques described
in Chapter 4. The software components can be measured during their unit tests. Construction of
components’ models does not necessarily start from scratch. Any software and platform constructed
for existing systems can be reused, as far as the required specifications are completed in the existing
models. The AIRES toolkit can be used to construct the components and build component libraries
for reuses in various application design. The AIRES tool further completes the unspecified component
properties with default value assignments.

Given an application, we need to first determine the software architecture that satisfies the applica-
tion’s functional requriremnets. Meanwhile, the platform must be designed to provide proper execution
environments for the designed software. Both are achieved by selecting components and building the
interconnections among them to achieve the function objectives of the application. The platform com-
ponent selection and configurations are determined not only based on the components’ functionality, but
also with consideration of the software workloads. A tradeoff between the platform capacity and cost
must be made at this phase. In other words, it is always desired to provide a platform with sufficient
capacity for the given software workloads but with minimum cost. Some algorithms such as first-fit
allocation and communication-minimization can be used to help to decide how many resources are es-
sential. In them AIRES tool, the software architecture and platform configuration are done through
dragging-and-dropping components from corresponding model libraries to a workspace. The functional
analysis and verification such as signal composibility and cyclic dependencies can be performed for the
software architecture model. The software architecture model should also contain transactions of the
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system derived from the system behavioral models, which describes the execution scenarios. As perfor-
mance characteristics are annotated to the components, the component selection and integration process
should also be a performance-aware process, i.e., the components and their connections should be made
in a way that consumes the smallest amount of the resources as possible. Such software architecture
will satisfy the performance constraints better while reduce the cost of the platform.

The runtime model is generated after the software structural model and platform have been generated.
All algorithms on component allocation, timing attributes’ assignments, and task formation algorithms
are applicable to this phase. The result is a task graph with information of execution allocation,
invocation frequencies, and inter-task communications. The timing and schedulability constraints come
into the picture at this phase to help on decisions of scheduling to meet these constraints. In the AIRES
toolkit, generation of the runtime model from the software and platform models can be automated using
the previously discussed algorithins.

Timing and schedulability analysis follows the runtime model generation. This step takes a task
graph generated in the runtime model generation phase, and analyzes the satisfiability of all timing and
resource constraints, both locally and globally. If all constraints are met, the generated task sets with
their runtime attributes can be delivered for implementation. Otherwise, modifications of the models
and/or system attributes must be made. The obtained analysis results should be used to direct the
modification. In the ATRES tool such modifications, called refinement, can be done automatically if
period transformation and/or priority adjustment are allowed.

It is common in current ESW development that multiple tools based on different model assumptions
from different vendors are used in the design and analysis tool chain. To extend the integratability and
applicability of AIRES toolkit, the ATRES algorithms were implemented in a way such that they can
be used as needed with other tools. According to the nature of these algorithms, we partitioned the
algorithms into 3 categories: composite check, runtime system generation, and schedulability analysis.
Each category contains a group of related algorithms and was packaged as either one separate interpreter
or a separate menu option in the standalone program. To integrate AIRES with other modeling and
analysis tools in the development tool chain, we have two options:

1. Re-implement the algorithms in the target modeling and analysis tool environment. Given a target
tool environment, the algorithms in AIRES tool can be rewritten to take the models in the target
tool, parse them to extrace needed information, generate the results, and present the results in
the target environment.

2. translate the models/results generated by other tools to AIRES. The algorithms in AIRES were
all implemented based on a common data structure that defines necessary information to run
the algorithm. Given the models generated by other modeling tool, or analysis results from an
upstream tool, we can translate the information required (and only the information required) in
the data structures, and import them to the ATRES tool. Similarly, the output from the AIRES
tool can also be translated into some format required by other downstrem tools.

In the current AIRES tool implementation, we took the first approach to implement the tool for
Automotive application, and took the second for Avionics applications. Although the same algorithms
and built-in design flow were used, this choice was made to show the adaptiveness of the proposed
approaches as well as facilitate collaborations with our partners.

5.1 Tool implementation for Automotive Applications
The AIRES toolkit for Automotive applications included a meta-model ATRES and three interpreters.
The meta-model was constructed in GME. As discussed in Chapter 2, the models were organized in the
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following folders:

e Simulink. This folder contains the models converted from Simulink diagrams in .mdl files. The
components in this folder have been translated into our port-based component structure. The
components are used as building blocks, and can be instantiated in application model construction.
The connections in the original Simulink diagram were rebuilt when the model was imported into
GME.

o Stateflow. Similar to the Simulink folder, this folder stores the models converted from Stateflow
diagram in .mdl files. The components in this folder were not used in current AIRES implemen-
tation, but will be in the future to support identification of concurrent activities and transactions.
The components in this folder are also reusable in an application model construction.

o HWFolder. A model in this folder specifies the platform configuration, including hardware, net-
work, and operation systems. The analysis algorithms, such as component allocation, task forma-
tion, and timing/schedulability ananlysis, refer to this model to obtain the execution environment
to proceed.

e SWFolder. A model in this folder defines the structural model (software architecture) of a designed
application software. Models in this folder can be constructed by creating instances or references
of those in Simulink/Stateflow folders.

e TuaskFolder. A model in this folder defines the runtime model of the system. Models in this folder
can be either manually created or automatically generated using the algorithms implemented as
interpreter. The timing/schedulabiity analysis are implemented using models in this folder.

We implemented three interpreters for model transformation and analysis. They are composite.dll for
model importation and composition check, comp2task.dll for runtime model generation, and schedule.dll
for timing and schedulability analysis.

Composition check interpreter. The composition check contains two functions: translating the
Matlab Simulink /Stateflow model into the ATRES model in GME, and checking signal compatibility
of a constructed application model. The model translation was implemented based on the UDM parser
from Vanderbilt University. Given Simulink/Stateflow diagrams created with the Matlab Simulink tool
and stored in a .mdl file, invoking the Simulink import function converts the models into AIRES models
in GME and creates the Simulink and Stateflow folders if they do not exist. During the model conversion,
the blocks are translated into components, and the signal ports are translated into input/output ports
of the components. All block hierarchies are maintained in the translated model. The names for signals,
block, and ports are also kept.

The signal composition check compares the linked components’ ports to detect any inconsistent link-
age. The inconsistent linkages include mismatches of signal types, data types and sizes, and value ranges
of variables. Such checks require the attributes of components and ports to be specified beforehand. In
the ATRES tool, such specifications are provided as a spreadsheet with the following structure:

<block_name, port_name, port_type, data_type, parameter_dimension, value_unit, value_range, de-
fault_value>

Figure 5.2 and 5.3 show two examples of port specifications in this form for an Electronic Throttle
Control (ETC).
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Figure 5.3: Port specifications for ETC monitor block.

The structured spreadsheet containing the port attributes must be loaded into the system before
checking the signal composition. This is achieved by a Signal import button in the interpreter. Multiple
invocations are required if the port specifications are stored in multiple spreadsheet files. The signal
composition check can be invoked by a Signal check button in the interpreter. The check runs Algo-
rithm 1 to check the matches between linked ports. For example, two incompatible signals, ¢ps! and
which_fault, were detected in the ETC model.

Runtime model generation interpreter. The runtime model generation algorithms were imple-
mented in the Comp2Task.dll interpreter. The interpreter works with models stored in SWFolder and
HWFolder. Both models have to be constructed manually by the user. To make the ATRES tool easy
to integrate with other tools in the tool chain, we allowed the component allocations to be specified
partially and manually. The manually specified components allocation are kept unchanged in the later
analysis, and only those that can be freely allocated are manipulated by the component allocation al-
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gorithm. Note that in both cases, the algorithm uses the processors and network links defined in the
HWFolder. 1t is required that the platform model is constructed before invoking the interpreter.

For the same integrability reason, we allowed manual specification of components’ rates and/or pri-
orities. The later algorithms of timing and scheduling policy assignments manipulate only those com-
ponents whose timing and scheduling attributes are not manually specified.

Timing and schedulability analysis interpreter. The timing and schedulability interpreter con-
tains the deadline distribution algorithm and the analyses of both local and global systems. The analysis
algorithms work with models stored in TaskFolder and HWFolder. The deadline distribution algorithm
should be invoked first by choosing the Deadline Distribution button in the interpreter. The results
of released offsets and intermediate deadlines of both tasks and messages are displayed in a separate
window.

The timing and schedulability analyses are invoked by Schedulability analysis button in the inter-
preter. Onme of the three analysis results, individual tasks on a processor, individual messages on a
network link, and end-to-end transactions, is displayed at a time. We assumed that the fixed-priority
based RTOSs are used in the platform configuration. Under this assumption, all tasks must be assigned
some fixed priorities to run. We have implemented three priority assignment algorithms in current
version of ATRES: rate-monotonic assignment, deadline-monotonic assignment, and user-defined assign-
ment. In case that the constraints are not all met, a Refine button is provided to invoke the automatic
refinement algorithms. Further, a Plot button is implemented to show the task executions in a Gantt
chart.

To facilitate the implementation after the system is analyzed that all constraints are met, we imple-
mented an OIL file generator. The OIL file is the configuration file for OSEKWorks, which defines the
hardware platform, software tasks with their properties and allocations, communications, resources, and
triggering mechanisms. Given an OIL file and the components, the system can be directly generated
using a tool such as WindRiver Tornado, and then downloaded to the target for execution.

Although all algorithms were implemented in ATRES as interpreters that is tightly integrated with
the GME environment, the algorithms can still be used individually to perform the desired analysis. We
will detail this by showing analysis of a task system generated from Teja tool directly in the evaluation
in Chapter 6. In this analysis, the composition check and runtime model generation functions were
ignored. Further, at the end of each algorithm, we implemented a Save Result option to allow the user
store the results in a file for future use.

5.2 Tool implementation for Avionics

The AIRES tool for Avionics was implemented as a standalone program. Different from the Automo-
tive tool implementation, which was based on a common meta-model AIRES and had a fixed, built-in
development process, the AIRES tool for Avionics was implemented based on a common exchange file
format, called Analysis Interchange Format (AIF). The AIF was developed and used within the Mo-
BIES program. AIF is a subset of Embedded System Modeling Language (ESML), and defines only
those modeling elements and attributes related to analysis, including component structure and ports,
event channels and invocations, configurations, distributions, and execution times of actions.

Given an ATF file generated from ESML models, ATIRES extracts system-level dependency infor-
mation, including event- and invocation-dependencies, and constructs port- and component-level de-
pendency graphs. Various analysis tasks are supported based on these graphs, such as checking for
anomalies such as dependency cycles, visual display of dependency graphs, as well as forward /backward
slicing to isolate relevant components. It then assigns execution rates to component ports, and uses
real-time scheduling theory to analyze the resulting system of real-time task set. If the task set is not
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schedulable, the designer can add more processors and allocate components to them with the help of
the automated allocation algorithm.

The AIRES tool for Avionics contains the algorithms of dependency analysis, component alloca-
tion, and real-time analysis. Since the Avionics applications are mainly modeled with data-oriented
components, the analysis is implemented based on Port Dependency Graphs (PDG) translated from
the UML-like component diagrams. The AIRES tool provided an opeartion to graphically display the
translated PDG, as shown in Figure 5.4. The display was implemented using the Graphviz tool and
language developed by AT&T [7].
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Figure 5.4: A translated PDG graph.

Dependency analysis. The dependency analyses includes event depedencies and invocation depen-
dencies. The dependency analysis should detect potential errors such as cyclic dependencies, events
without a consumer, and components not reachable from any timer. The analysis algorithms are in-
voked when the AIF file is imported into the tool. After the importation completes, the errors are listed
in the warning report generated by ATRES tool. Figure 5.5 shows an example display of dependency
analysis report in AIRES.

Real-time analysis. The real-time analysis in AIRES for Avionics tool contains the algorithms
for local and global schedulability analysis, and rate group assignment. The rate assignment was
implemented using an algorithm based on Algorithm 6. In this algorithm, we followed one timer event
at a time, traced the events flowing downstream, and marked visited components for assigning the
rate of the timer. This design strategy was chosen according to the system characteristics of Avionics
applications — every component runs at only one rate. Any component subscribed to multiple events at
different rates should be examined, as it could be an error. To help the designer to identify the potential
errors, we implemented forward slice and backward slice functions in the analysis. The forward slice
starts from a component and graphically shows all components triggered by its output(s) downstream.
On contrary, the backward slice starts from an indicated component and graphically shows the upstream
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Figure 5.5: Example error report of dependency analysis.

components that trigger it. Figure 5.6 shows an example result of backward and forward slice. By
examining the results of these results the design can easily identify the source of conflict rates.

If the rate assignment completes correctly, the assigned results can be used to update the AIF file,
which in turn can be reloaded in the modeling tool.

The timing and schedulability analysis was also implemented as a backend operation during the AIF
file importation. After the AIF file is imported, the schedulability decision and the worst-case response
times for all tasks are displayed in the main information sheet. To perform the analysis, worst-case
execution times of the tasks and scheduling policies used in the platform must be given. According
to our Avionics OEP partner, the worst-case execution times of components and tasks were obtained
through measurements on a real target. The collected timing data was then used to patch the AIF file
by appending the execution times to components and tasks. This was done using ITF2ATF, a different
tool developed by Southwest Research Institute. For scheduling policy selection, we implemented only
rate-monotonic schedulability ananlysis and chose the rate-monotonic priority assignment as this is the
only policy used in Avionics systems.

Besides the local schedulability analysis, we implemented the global analysis, called end-to-end time-
line, in the AIRES tool for Avionics. The end-to-end timeline analysis was designed to verify timing
constraints satisfaction of transactions (called system threads in Avionics) that involving multipe tasks
on different processors. This function is useful to check timing errors such as frameoverruns. The results
can be graphically displayed as shown in Figure 5.7.

Component allocation. The implementation of component allocation in the AIRES tool for Avionics
was based on the algorithms in Section 3.2.1. Different from the AIRES tool for Automotive, there was
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Figure 5.7: An example end-to-end timing analysis result.

no process for task formation afterwards. This is due to the domain specific design methods in Avionics.
With such a method, one thread dedicated to a rate is pre-constructed on all processors. Therefore, the
task/thread containing the component is determined after the rate and the processor of the component
are assigned.

The AIF file that contains the model information must be loaded in the system first. The AIF file
must be patched with worst-case execution times for all componnets (if this isn’t done the worst-case
execution time of the component is assumed to be zero). There are 2 considerations that can be used for
component allocation: the maximum number of components on each processor and different allocation
strategies. The maximum number of components specifies the limitation of the processor. The allocation
strategies include first-fit, load-balance, and minimization of communication. The number of processors
in the system, on the other hand, can not be modified in ATRES tool. It can only be changed in a
modeling tool and then converted to an AIF file.

The generated allocation can be used to update current AIF file, which in turn can be imported back
to a modeling tool. If the models are updated with ATRES component allocation, a new configuration
model will be created in the modeling tool.
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Chapter 6

Evaluation Results

We have designed and performed a set of experiments to evaluate the effectiveness and applicability of
the ATRES tool. We evaluated both individual algorithms and the integrated tool chain. The evaluation
of algorithms focused on the computation complexity. The integrated tool chain evaluation focused on
the integrability with other tools and overall effort savings in the development process.

6.1 Evaluation of analysis algorithms

Among the developed algorithms, the algorithms for composability analysis and event/invocation
analysis address the functional design issues, and were evaluated in the tool chain integration exper-
iments. Similarly, the algorithms for timing attribute assignment, task formation, and schedulability
analysis are either straight forward or use a simple revised version of some traditional algorithm to
suite for the tool integration. These algorithms were also evaluated mainly in tool chain integration
experiments to demonstrate the overall effort savings in the whole development cycle. So our individual
algorithm evaluations focus on the component allocation algorithms, and task dependency resolving.
6.1.1 Component allocation algorithms

The evaluations of the component allocation algorithms aimed to understand the computation com-
plexity of the algorithm and the quality of the generated results. To this end, we chose the number of
steps to generate a result as the metrics for computation complexity. The steps performed to generate
a result indicates the the time for the algorithm to generate a result, thus is usually used to evaluate
the scalability of the algorithm. To evaluate the quality of the generated results, we compared the
results generated by the algorithm with the optimal results generated by an exhaustive search. Since
our algorithm uses heuristics to find a solution quickly, the results may not be optimal. The smaller the
difference between the results of our algorithm and the optimal solution, the better quality of results
our algorithm generates.

To evaluate these allocation algorithms, we designed our experiments by randomly generating a set
of directed acyclic graphs. Each graph represented a transaction in the structural model. Table 6.1 lists
the system configuration parameters in the design of experiments.

# trans/model # comp/trans # conn/comp # inputs/trans # outputs/trans

# processo:

value range 5 ~ 100 10 ~ 1000 0~6 1~10 1~10

1~40

workload (%) - 0.001 ~ 0.1 0.01 ~ 0.2 - -

04~1

Table 6.1: Parameters for random system generation.

In Table 6.1, the values of workload defines the workload introduced by each component or connection.

74
74



The workload introduced by a component was computed as the component’s execution time divided
by its invocation period. The workload of a connection was computed as the size of messages sent in
a unit of time divided by the bandwidth reserved for the communication. Differently, the workload of
each processor in the table defines the utilization bound of the processor, which total workloads of the
components allocated on it should not exceed.

We first evaluated first-fit, load-balance, and communication minization. We used the number of
steps (iterations) each algorithm performed before a solution was found for performance metrics of
the allocation algorithms. Such performance was evaluated using various graph size, which were the
number of components in the graph. The performance metrics reflected the scalability of the algorithms.
Figure 6.1 showed the steps required to generate a solution with each algorithm.
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Figure 6.1: Scalability of the algorithms with different graph size.

The results shown in Figure 6.1 were generated with fixed with 2 processors. The workload for each
measured case was between 1.2 to 1.5. This was chosen to ensure that there were components allocated
on both processors. To make the results fit in the diagram, we took the natural log of the result for
optimal and a square root of the result for communication minimization. As can be seen, the number
of steps needed for the optimal solution was exponential, while it was polynormial for communication
minimization, and it was linear for first-fit and load-balance algorithms.

To evaluate the quality of the algorithms, we compared the solution of our algorithm with an optimal
solution using a small size graph. The small size graph was chosen to guarantee an optimal solution
found within a reasonable time during the experiment. We limited the number of components in the
graph to be 30 for the experiment. This was based on experiments that showed the execution time of
the optimal algorithm with components greater than 30 took over 10 hours to generate a result. To find
an optimal solution, we implemented an exhaustive search algorithm based on computing permutation
of allocations. The quality of the algorithms were shown in Figure 6.2, 6.3, and 6.4. Since we would
like to keep the similar workload across the experiments with different numbers of components, the
worloads introduced by each components was decreased as the number of components increased in the
experiments.

All results showed that the differences between the optimal solutions and the heuristic results were
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Figure 6.2: Quality of the first-fit algorithm with different graph size.

close. For first-fit algorithm, the larger the difference between different processors, the better the
results are. The differences between optimal results and heuristic results tend to reduce as the number
of components increased. This scenario was in fact a result of the decreased utilization of components.
As the workload of each component becomes small, it is easier to fully utilize a processor than using
components with larger utilizations. Similarly, the difference between optimal and heuristic algorithms
for load-balance were also close. In this case, the smaller the difference is, the better quality of the
algorithm is. The optimal results for load-balance is almost constant zero. The heuristic algorithm
resulted in the optimal results for even number of components and a small difference for odd number of
components. We observed that the difference became smaller as the workload of components decreased.
This may be caused by workload bounds introduced during the random graph generation. Such bounds
enforced the component workloads to be similar. Therefore, it is easier to balance the workload on
two processors when the component number is even. The difference between optimal and heuristic
algorithms for communication minimization also was shown to be small.

Besides the graph size, the algorithm complexity depends also on the platform configuration. We
performed a set of experiments with different number of processors. The number of processors were
chosen from 2 to 7. The number of components were fixed to be 20 for comparing with optimal solutions.
Any configuration with a processor number greater than 8 took an extremely long time to complete.
The steps for our algorithms and optimal one are showed in Figure 6.5, and the quality of our alogirhtms
compared with the optimal solutions were given in Figure 6.6, 6.7, and 6.8.

Again, we converted the steps for the optimal algorithm to its In value to make it fit in the diagram.
Similarly, a square root of the steps of communication minimization was used. The results showed
that the complexity is exponential as the number of processors increases for the optimal algorithm, is
super-polynormial for our communication minimization algorithm, and is linear for both our first-fit
and load-balancing algorithm. The quality of the algorithm was represented using cumulative utlization
difference, which was computed as follows:
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Figure 6.3: Quality of the load-balance algorithm with different graph size.

(Ui —Uj)

where 7 and j are indices of processors that are sorted in decending utilization order.

The quality of our algorithms generated almost the same results as the optimal ones for both first-fit
and load-balance algorithms. The difference between the results of our communication minimization
algorithm and the optimal algorithm was within the same bound as that of the experiment with different
graph sizes. This indicated that the graph size has more significant impact to the algorithm quality
than the number of processors for first-fit and load-balance algorithms. On the other hand, the effects
of the number of processors and graph size are equivalent for communication minimization algorithm.

The experiments with optimal solutions only ran in a small scale due to the complexity of the
optimal algorithm. To evaluate the scalabity of our algorithms in a large scale with large number
of components, we generated graphs with component number from 100 to 1000. These experiments
included the combinational allocation algorithms with considerations of both computation resource and
communication resources. In this set of experiment, the number of processors was fixed to 4. The total
system workloads were assigned randomly from 2.3 to 2.7. Figure 6.9 shows the number of steps for
each algorithm to generate a solution.

It can be seen that the complexity of first-fit and load-balance algorithms are still linear, while the
rest of the algorithms are all polynormial. All algorithms generated a solution with 30 minutes on a P3
800 MHz machine. We also did experiments with some graphs containing 5,000 ~ 10,000 components,
and experienced from 4 ~ 10 hours before a solution was found on the same machine.

We developed two heuristic for communication minimization algorithm with load-balance. One was
a simple heuristic that merges the components connected with the great cost link (H1). Another was
the one proposed in [1] that summing the costs of all links of a component, and selecting the component
with the highest cost sum to merge (H2). Similarly, we fixed the number of processors to be 4, and
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Figure 6.4: Quality of the communication minimization algorithm with different graph size.

assigned the system workload between 2.3 to 2.7. Figures 6.10, 6.11 and 6.12 show the experiment
results.

The results showed no big quality differences between heuristic H1 and heuristic H2. However,
according to the results in Figure 6.10, heuristic H1 has much lower complexity than heuristic H2.
Therefore, we recommand using H1 as the main heuristic for components’ allocation with communication
minization.

6.1.2 Dependency resolving algorithm

The experiments in this section were designed to evaluate our approach for the dependency resolving
algorithm. Since the goal of this algorithm is to break a dependent task set into an independent task set
so that a simple, polynomial time TAS algorithm can be applied, we need to select a TAS algorithm in
the evaluation. The TAS algorithm was applied equally to both the dependent task set before transfor-
mation and the independent task set after transformation in order to show the performance differences.
Without loosing generality, we chose the first-fit algorithm for task allocation. Further, we assigned
priorities of tasks using deadline-monotonic assignment with a higher priority for the with a tighter
deadline. The scheduling algorithm used in the experiment was the holistic scheduling approach [3].
The holistic scheduling analysis uses the same time-demand function as our implemented local and
global schedulability analysis algorithms in the AIRES tool. The only difference is that the holistic
scheduling analysis considers the release jitters of tasks. !

Our algorithm for polling rate derivation partitioned end-to-end timing constraints over individual
tasks or composite tasks by using two well-known deadline-distribution heuristics: pure slicing and
normal slicing approach [14]. The pure slicing approach distributes slack in the deadline according to
the number of tasks in the directed acyclic graph, while the normal slicing approach distributes the
deadline to component tasks in proportion to their execution times. Only local clustering is used in
comparisons to evaluate the overhead reduction methods.

!Since we were only interested in the relative performance of the shared-buffer approach, the choices of algorithms will
not affect the comparison results.
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Figure 6.5: Scalability of the algorithms with different numbers of processors.

The simulated system we exercised contains a set of tasks whose number ranges randomly from 60
to 300, partitioned into 10 ~ 50 groups, with each group consisting of 4 ~ 8 dependent tasks.
Table 6.2 summarizes the selected algorithms and system parameters in the simulation.

Configuration parameters values

Deadline-distribution Pure slicing, Normal slicing

Task clustering Local clustering

Task allocation First-fit bin packing algorithm
Scheduling Static priority pre-emptive scheduling

Average out degree of each task | 2
Average in degree of each task | 2

Execution time of each task 5~ 10 ms

Period of a dependency graph 50 ~ 150 ms

Slack for a dependency graph 2.5 ~ 7 times the sum of execution times of tasks in the graph
Polling overhead 5 ~ 10% of single task execution times

Table 6.2: Algorithm selection and graph characteristics in the simulation system.

In the simulation, we first constructed several task graphs with properties assigned according to
Table 6.2. Then, they were transformed into independent tasks using the shared-buffer approach.
Algorithm PP_D was executed to iteratively generate task allocation and scheduling, and provided the
number of processors used to schedule the given task set, processor utilizations, polling overheads, and
the number of iterations to generate a schedulable task set. This process was repeated 3 times with
different random seeds and an average was taken on the obtained values.

Experimental results:

To find a schedulable task allocation, the total number of schedulability checks performed in each

iteration by the first-fit TAS is of order ©(n *p), where n and p are the number of tasks and the number
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Figure 6.6: Quality of first-fit algorithm with different processor number.

of processors, respectively. The total number of checks performed during the execution of Algorithm
PP_D depends on the number of iterations required to converge to a solution. In each iteration, any task
that does not satisfy Eq. (3.2) has its polling period reduced using Eq. (3.4). Since the polling period
of a task can only decrease with each iteration until the task can be either satisfactorily scheduled,
or below a specified threshold when the algorithm gives up, the number of iterations in which each
task has its polling period revised, is bounded. This sets an upper limit to the number of iterations
that the algorithm can perform, and this limit is linear in the number of tasks for a given slack. The
experimental results are shown in Figure 6.14 and 6.13,

The number of iterations required to allocate tasks on processors with a different number of tasks in
the task set is given in Figure 6.14. In this experiment, we fixed the slacks in all dependent-task graphs
to a constant of 7 times of the execution time for all tasks. The results in Figure 6.14 showed that the
number of iterations increases almost linearly with the number of tasks. Irrespective of the number of
tasks in the system, the number of iterations to generate a solution is bounded around 20, even in a
graph of 250 tasks. This indicates that the TAS problem for a large task set can be solved in a short
time using our approach.

The results on the efficiency of using shared buffers are plotted in Figure 6.13, showing the number
of processors required to make the task set schedulable using the first-fit algorithm. We compare the
number of processors returned by Algorithm 9 that makes the system schedulable with that returned by
the first-fit TAS on the same system without inter-task dependencies. All tasks in the system without
dependencies share the same period and deadline as that of the original system with dependencies. We
set the maximum number of tasks in this experiment to 220 tasks.

The results in Figure 6.13 show that without clustering, allocation algorithms using the polling
method perform worse when tasks have low slacks in their deadlines. This is because the polling rate
for tasks gets higher after transformation when the slacks are low, thus wasting more processor time for
polling. But for larger system slacks, the processors returned by the polling approach asymptotically
met that of scheduling the system without any inter-task dependencies. The polling rates for dependent
tasks decrease as the system slacks increase. In such cases, truly independent tasks require fewer

80



T
—O- optimal
—+—_heuristic

1.8 B

o L =
[e-] n
T T T
®
®
L L L

o

=3
T

~
|

cumulative utilization differences
AN

04 _ A / g
— ~ /
PR NN /
0.2 - A+ /// \\\\\ / i
- ~
.- _e
o f e~ R
L L L L L L
2 3 4 5 6 7

number of processors

Figure 6.7: Quality of load-balance algorithm with different processor number.

processors for them to be schedulable. This implies that our approach is more useful when tasks have
more slack and longer deadlines, which is commonly the case in large-scale distributed systems.

Figure 6.13 also shows the efficacy of task clustering in terms of polling overhead reduction. Even at
low system slacks, if the local clustering was used, the number of processors required to schedule the
task system was only marginally higher than that required to schedule the same system without task
dependencies. This indicates that task clustering was indispensable to the shared-buffer approach.

Figure 6.15 shows the polling overheads before and after task clustering. The polling overhead is
defined as:

pollexect:

Z Z pol lTJ{ j

PEP  TieTS,

P
polling overhead in % = 1Pl
Z Z polle;cecTJ{ er )
pPEP TIeTS, pO”TJ{ pTJ{
|P|

where P i 1s the set of processors, T'S, the set of tasks allocated on p, pollemeorr the execution time for
polling T, pollT: the polling period of , P the invocation period of 7T; and er the execution time
for data processmg of T}. The numerator in the above equation denotes the polhng utilization averaged
over all tasks and processors. The denominator in the equation denotes the sum of polling and task
utilizations averaged over all tasks and processors.

From Figure 6.15, we observed that the overhead without task clustering was 2 ~ 3 times higher than
that with local clustering. We also observed that the polling overheads decreased as the system slacks
increased. This was also caused by lowering the polling rates of tasks with increased slack. With task
clustering, the polling overheads were reduced and thus more acceptable as they were around less than
15%, even at low system slacks.

We also observed that the normal deadline-distribution algorithm tends to introduce smaller polling
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Figure 6.8: Quality of communication minimization algorithm with different processor number.

overheads, use fewer processors, and assign lower polling rates for dependent tasks than the pure deadline
distribution when task clustering is not used. When task clustering was used, both the normal and pure
deadline-distribution algorithms tend to generate similar results on these metrics.

As the TAS for precedence-constrained periodic tasks in a distributed sysem is NP-complete, existing
heuristics for determining the satisfiability of a task allocation can be very complex [32], or involve
generating the entire schedule up to the planning cycle — LCM (least common multiple) of periods
— of all tasks on each processor [22, 21]. These approaches are computationally very intensive and
can take a very long time. Since such timing satisfiability checks are invoked at each step of any TAS
algorithm, the running times can be very large even for moderately-sized task sets.

In the polling method, the global end-to-end timing constraints are broken into individual timing
constraints on component tasks. Each task is made independent of others using shared buffers. Conse-
quently, determining the satisfiability of a given deadline allocation to tasks only involves schedulability
check on each processor. Since such checks for independent periodic tasks can be done accurately and
very fast, TAS using the polling method is much faster than the usual non-polling approach.

To evaluate this, we compared the running times for TAS using the polling method (polling TAS)
with TAS not using polling method, but allocating and scheduling based on dependencies (regular
TAS). For polling method, we used normal deadline distribution algorithm. For regular TAS, we used
a simple depth-first search (DFS) algorithm that terminates after finding the first solution that satisfies
the timing constraints. To determine timing satisfiability, we used a simple algorithm that determines
the response time of each task using holistic analysis [3], and then determines the end-to-end response
times using the response times of individual component tasks. To see how fast this simple check is, we
determined the time taken for the satisfiability tests for an example task set in [32], on a sun workstation.
Our simple check took 0.0019 second whereas the iterative method in [32] took 0.13 second. Using this
simple check for DFS TAS, we measured the times taken to allocate and schedule 15 task graphs with
characteristics as given in Table 6.2, on a 1.2GHz AMD Athlon processor with 256 MB RAM. The time
taken for both approaches for systems with different slacks is shown in Table 6.3.

Even with a simple satisfiability check, the DF'S algorithm takes a much longer time than the polling
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Figure 6.9: Scalability of algorithms with large graph size.

Time to find a solution (sec) | Time to find a solution (sec)
Approach (slack=5.0) (slack=7.0)
Polling method 1.5 1.3
DFS method 2334 2111

Table 6.3: Polling method and regular TAS

method. We also found that since DFS is not an optimal algorithm, it takes more processors than the
polling method with first-fit bin packing allocation to schedule the tasks.

A more rigorous timing check like in [32], and to optimize TAS for a metric like load balancing, or to
minimize processors, would increase the time for TAS significantly when dependencies are considered.
With the polling method, however, it is easier and much faster to perform TAS to optimize for metrics
like load balancing, or minimizing processors owing to its simpler timing satisfiability checks and task
independence.

However, because of the overheads associated with the polling method, its solutions may be inferior to
optimum solutions obtained directly. To evaluate how the polling method compares with an (optimum)
regular TAS, we compared the number of processors required to schedule 9 task graphs using the polling
method and an exhaustive search TAS algorithm. The characteristics of the task graphs are given in
Table 6.2. Table 6.4 shows the number of processors required and their average utilizations.

For a system slack of 2.0, due to its overheads, the polling method requires, on average, an extra
processor to schedule the task set. However, when the system slack is higher at 5.0, the polling method
requires the same number of processors as the regular TAS method. As described and evaluated above,
a higher slack in deadlines decreases the polling overhead, making the performance of the TAS algorithm
using polling closer to the optimum.
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Figure 6.10: Scalability of heuristic.
feasible solution (slack=2.0 feasible solution (slack=5.0
Approach # processors average utilization | # processors average utlization
Polling method 6.67 0.82 6 0.80
Optimum TAS 6 0.76 6 0.76

Table 6.4: Polling method and optimum TAS algorithm

6.2 Evaluation with tool chain integration

The tool chain integration experiments were performed to investigate the integratability of the AIRES
tool. This is the main object of the MoBIES program. The experiments of integrations were done
with assistences from our OEP partners in the MoBIES program. The experiments included taking
application models from our OEP partners, translating them into the models compatible with ATRES
modeling language, carrying out the analysis, and either feeding back the analysis results to the modeling
tool or tagging the models with the analysis results. Since the application domains of automotive and
avionics are different, and our ATRES toolkit was applied differently to these two domains, we discussed
the integration experiments separately in the following sections.
6.2.1 Evaluation with Automotive OEP applications

The tool chain integration experiments for Automotive involved two applications: the Electronic
Throttle Control (ETC) and Vehicle-to-Vehicle (V2V) application. The ETC application experimented
every aspect of AIRES toolkit through the end-to-end design process, including component modeling,
functional model design, runtime model generation, system analysis, and code generation. The V2V
application experimented the case where the AIRES toolkit is used only for analysis in the end-to-
end design process. The evaluation metrics of the evaluations included: (i) the AIRES tool can take
models output of upstream tools and generate information for downstream tools, and (ii) the AIRES
tool generated results that can help to make better design.

The experiments were carried out on a testbed with properties shown in Table 6.5.
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Figure 6.11: Communication cost of solutions using different heuristic.

Experiment HW 0S upstream | downstream model ATRES
tool tool envrionment tool
AFR4+ETC | Pentium | Windows | Simulink | WindRiver GME3
850 MHz 2000 Stateflow Tonado 2 r3.3.28 v2.5
256 MB SP6
V2V Pentium | Windows GME3 v2.5
850 MHz 2000 Teja — r3.3.28 sched.dll
256 MB SP6

Table 6.5: Environment for the experiments using Automotive application.

The experiment process of ETC application was as follows. The model we used was AFR control
with ETC simulink model release version 1.0 given by Automotive OEP. The provided models included
an ETC monitor subsystem, an ETC manager subsystem, an ETC servo-control subsystem, an Air-
Fuel-Ratio control (AFR) subsystem, and a SFP subsystem. These subsystems interacted through data
flow. The activations of these subsystems were defined in a set of Stateflow diagrams with invocation
periods were given. Since the given ETC-AFR model was limited on timing and schedulability model,
we imposed the needed information artificially and made some limited changes of the models’ timing
information to test more functionality of AIRES tool. Specifically, we kept all rates of the original model,
and the execution times measured at our lab using the OEP provided C code. Then we performed the
component allocation and task formation to generate a runtime model. The timing and schedulability
analysis was carried out with the generated runtime models afterwards, and provided the analysis
results. After the model passed the analysis, we generated the configuration file so as to generate the
target code.

We first translated these Simulink/Stateflow models into AIRES component models in GME. These

models were stored in Simulink /Stateflow as reusable components. The component hierarchy in Simulink /Stateflow

was maintained in the translated component models. Components at different hierarchies can be reused
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Figure 6.12: Utilization of solutions using different heuristic.

equally in the application construction. We recorded the time it took to import the models and complete
the analysis. Table 6.6 shows the results of this experiment steps.

operation Application Simulink Stateflow operation
model # elements # hierarchy | # elements # hierarchy | time (sec)

Model import etc 1400 6 243 7 170
afr 793 7 13 4 67

sfp 89 5 5 2 30

Signal import monitor 25 3
manager 43 8

servo 62 14

afr 14 4

sfp 6 1

Signal check 2

Table 6.6: Experiment results of composition check with AFR+ETC.

The number of elements in the each model in Table 6.6 includes all modeling elements such as input
and output points, blocks, S-functions, etc. We include all elements at different modeling hierarchies in
the model because each of these elements are treated as a unique instance and must be recreated in the
component repository during the translation, regardless that there might be some duplication in the
original model. The level of modeling hierarchy also affected the time of the translation. The results
showed that the number of elements in the model affects the translation time significantly. The signal
importation time depended on both the number of the signals and the data types of the signal. The
algorithm detected all mismatched signals in the specification files. After correcting them, we obtained
a model without functional error.

The components were allocated by the ATRES tool automatically after the functional check. In this
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Figure 6.13: Number of processors required vs. slack

step, we manually created a platform with 2 MPC processors. The platform used by OEP to evaluate
the final code was running OSEKWorks on MPC 555 and HCO08 connected via a serial cable. Since
only OSEKWorks on MPC was measured in our lab, we replaced HC08 by another MPC to be able to
obtain quantitative results in the analysis. The results of ATRES component allocation showed that all
components can be allocated on one processor. Five tasks were generated according to the propogated
rates.

The 5 tasks were created with their timing constraints assigned. In this experiment, we assumed
the deadlines of each task are equal to their periods. The analysis was performed with the tasks’
priorities assigned using rate-monotonic priority assignment. To make the evaluation consistent with
OEP’s target, we manually allocated the tasks on two processors instead of on one according to AIRES
tool. With this setup, the analysis showed that the timing constraints can all be satisfied. Table 6.7
showed the results of AIRES timing and schedulability analysis.

task period (ms) wcet (ms) priority wert (ms) resource consumption # preemptions

etc manager 20 0.1 2 2.2 0.005 2
etc monitor 30 0.3 1 2.66 0.01 3
etc servo 3 1.2 4 1.32 0.4 0
afr 4 0.4 3 1.88 0.1 1

spf 1 0.1 ) 0.1 0.1 0

Table 6.7: Timing and schedulability analysis results of ETC+AFR.

The results in Table 6.7 included all the overheads such as timer overhead and scheduling overhead of
OSEKWorks. The resolution of the clock was chosen as 1 millisecond for tasks of ETC and AFR. The
SPF task was assumed to be allocated on a different processor (using a co-processor) running without
any OS overhead. Since the SPF task is triggered by the crank shaft, the SPF executes aperiodically.
The period for SPF was therefore assigned to be its minimum interval invocation time. Further, all
priorities assigned in this experiment were global priorities.
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The final target system was generated after all timing and resource constraints were met. The final
runtime model was then outputted to an OIL file. The final system was generated by using the OIL file
and components’ code in WindRiver Tornado 2 — a system target generation tool for an MPC target.
Although the target code was generated successfully, we could not experiment it on the target processor
since some of the initial model parameters were not available.

The experiment of V2V was to evaluate and test the integratability of AIRES tool by using it
only at certain phase of development for certain analysis. In this experiment, we chose the timing and
schedulability analysis as the function for tool chain integration. The evalaution metrics included efforts
required to using the ATRES timing and schedulability analysis in the tool chain, and the accuracy of
the analysis results.

The V2V model was modeled in the Teja tool. To use the AIRES tool for analysis, a runtime model
is essential. The system-level tasks and their interactions were provided by OEP in a set of interaction
diagrams. All the scheduling properties of the task set including average and worst-case execution times,
periods, and priorities were given. Since we did not have any translator developed to convert a Teja
model to AIRES, we manually recreated the task graph according to the diagrams given the OEP. The
creation included both task set and platform. The V2V application ran on a platform consisting of 2
networked Pentium machines with QNX operating system. The tasks were running as QNX processes.
We applied the 2 priority-based scheduling policies in the V2V experiment: rate-monotonic assignment
and user-defined assignment. These two priority assignments were chosen to evaluate the priority
assignment in the initial system configuration. Since RM is an optimal assignment for indepenendent
tasks with deadlines equal to their periods, the smaller resource useage differences between using given
priorities and using RM are, the better the initial system configuration is.

Tables 6.8 and 6.9 show the analysis results of tasks on processor P1 and P2 using RMS. In this
experiment, the user-defined priorities were ignored, and the algorithm generated the priorities of tasks
according to their periods. A larger number in the tables represents a higher priority.

The analysis results provided the worst-case response times, resource consumptions (as utilizations
for computation resource only), and experienced a number of context switches during the worst-case
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Figure 6.15: Simulation results for polling overheads.

executions. As can be seen from the results, all tasks had the worst-case response times less than their
periods. The analysis took into account the overheads and resource consumptions of QNX. So the tasks
on both processors are schedulable under RMS. The computation resource consumptions for application
tasks, timing service and scheduler on P1 were 23.15%, 0.56%, and 0.0015%, and on P2 were 0.43%,
0.56%, and 0, respectively. This indicates that the workloads on these two processors were not balanced.
The scheduler overhead on P2 was extremely small, and was rounded-up to 0. The overheads of the
timing service are the same on both processors due to we used the same timer resolution.

We then checked the tasks’ response times and the system schedulability under user-defined priorities.
The priorities assigned to each task were given in V2V documentation [8]. The analysis results are
presented in Table 6.10 and 6.11.

According to the analysis, the task set on processor P1 was unschedulable. Specifically, the worst-case
response time of task wveh_lat was 4.9 ms, which was greater than its period 2 ms. This was mainly
caused by the priority of veh_lat was assigned to 10, which was lower than many other concurrent
tasks on P1. The lower priority made the executions of the task wveh_lat interferred with by all other
higher priority tasks, in the worst-case. The task set on P2 was schedulable, but most of the tasks had
longer worst-case response times compared to those using RMS in Table 2. The resource utilization for
application tasks, timer, and scheduler were 23.15%, 0.56% and 0.0005% for P1, and 0.43%, 0.56% and
0 for P2. As can be seen, the resource consumptions for application tasks remained the same for both
processors regardless to the worst-case response times for tasks using the given priorities are longer
than those using RMS. This indicates that properly adjusting the priority assignment can improve the
system schedulability and timing performance without changing workloads (running some task faster
or slower). The timer overheads also remained the same, as both cases used the same resolution. On
the other hand, the scheduler consumed less resource in the case of use-specified priorities due to fewer
context switches (225 vs 282 in total).

To evaluate the accuracy of the results generated by AIRES tool, we took an approach of comparing
the results with a well-known commercial analysis tool, RapidRMA. Ideally, we would like to compare
the analysis results with the runtime measurement in the accuracy evaluation. However, due to the
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period | execution | response # context
task (ms) | time (ms) | time (ms) | utilization switch | priority | processor
V2V.atmiol6 21 0.139 2.578 0.007 18 10 P1
V2V.atmioe 2 0.114 0.231 0.057 2 27 P1
V2V.button 30 0.024 2.672 0.001 20 8 P1
V2V.canbrake 8 0.001 0.337 0 5 23 P1
V2V.canfix 20 0.001 0.338 0 6 22 P1
V2V.cani 10000 0 2.799 0 23 3 P1
V2V.canread 7.7 0.104 0.336 0.014 4 24 P1
V2V .cansteer 4 0.001 0.232 0 3 26 P1
V2V.db_slv 1.5 0.037 0.043 0.025 0 29 P1
V2V.DL 1953.9 0.065 2.799 0 22 5 P1
V2V.hmi 200 0.062 2.734 0 21 6 P1
V2V.moblong 21 0.76 2.439 0.036 17 11 P1
V2V.NL 75160 1 3.842 0 25 2 P1
V2V.nodelrd 21 0.262 1.448 0.012 13 12 P1
V2V.nodelrw 21 0.083 1.186 0.004 12 13 P1
V2V.pathl101 21 0.047 1.103 0.002 11 14 P1
V2V.pctiol0 21 0.107 1.056 0.005 10 15 P1
V2V.radioDriver 29.5 0.07 2.648 0.002 19 9 P1
V2V.regulation 21 0.159 0.943 0.008 9 16 P1
V2V.supervisor 21 0.101 0.784 0.005 8 17 P1
V2V.TL 150108 0 3.842 0 26 1 P1
V2V.veh_iols 21 0.345 0.683 0.016 7 18 P1
V2V.veh_lat 2 0.074 0.117 0.037 1 28 P1

Table 6.8: Analysis results of V2V tasks on P1 using RMS.

availability issues and constraints of the implemented system, we could not run the target code on
our platform. The RapidRMA was selected since (i) it is a commercial tool with the functionalities
overlapping with AIRES, particularly in timing and schedulability analysis, and (ii) it was also selected
by our industrial partner as a baseline tool.

In this experiment, we were interested in how close the results would be between the AIRES tool and
RapidRMA. We used the same set of tasks and values to perform the analysis. Table 6.12, 6.13, 6.14,
and 6.15 show the analysis results of all tasks for processor P1 and P2 under RMS and user-defined
priorities.

The results generated by RapidRMA were very close to the results generated by AIRES. Specifically,
the resource utilizations of P1 and P2 were 23.15% and 0.43% respectively for both RMS and user-
defined priorities. These were the same as the resource consumed by the application tasks in the
AIRES tool. The system overheads, on the other hand, were not considered in RapidRMA. 2

The response times of tasks of RapidRMA were very close to those of the AIRES tool. The slightly
longer response times of the same task of AIRES than those of RapidRMA were caused by the inclusion
of OS overheads.

For the user-defined priorities, RapidRMA yielded the same unschedulable decisions for processor P1.

2The overheads can be modeled and included in RapidRMA analysis. We did not exercise this since it is not intuitive
to include such overheads in RapidRMA.
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period | execution | response # context
task (ms) | time (ms) | time (ms) | utilization switch | priority | processor
V2V.db_slvy 6.4 0.005 0.011 0.001 0 25 P2
V2V.evt300 65.356 0.055 0.121 0.001 4 7 P2
V2V.hi 21 0.007 0.066 0 3 19 P2
V2V.node2rd 21 0.042 0.059 0.002 2 20 P2
V2V.node2wr 21 0.006 0.017 0 1 21 P2
V2V.veh_iomb 5000 0.047 0.168 0 5 4 P2

Table 6.9: Analysis results of V2V tasks on P2 using RMS.

It was the same task veh_lat that missed its deadline. The rest of the task set had the similar slightly
shorter response times in RapidRMA, which were caused by the inclusion of OS overheads in ATRES
analysis.

To complete the analysis of V2V system, the AIRES tool took 5 seconds for both RMS and user-
defined priorities. On the other hand, RapidRMA took 73 seconds to complete analysis using RMS and
76 seconds to complete using user-defined priorities. We believe the large computation time difference
between AIRES and RapidRMA is caused by the richer functionality and synchronization protocols
such as deadline monotonic, cyclic executive, and priority ceiling considered in RapidRMA.

Overall, the experimental results of the ETC application and the V2V application showed that
the ATIRES tool can be used in any way from an individual tool for certain design analysis to an
integrated tool chain through multiple design phases. The AIRES tool provided a unique feature of
automatic generation of the runtime model from the software component model. The modeling language
enforced the completion of modeling specifications, therefore the performance can be processed with
sufficient information. The built-in design process accelerates the design and reduces the errors. The
schedulability and timing analysis function provides the better quality of analysis results by including
both application workloads and underlying system overheads.

The biggest issue in the current AIRES tool is the seamless integration with other modeling tools into
the tool chain. We believe this issue can not be fully resolved without a common modeling language
shared by all modeling tools. Although individual translators can be developed for each pair of inter-
active tools, it would be difficult to maintain these translators as their number will be large if a wide
range of candidate tools exist. Consequently, the current AIRES tool can not fully automate the design
process. Much labor intensive modeling work has to be done manually, increasing both development
time and potentially introducing additional errors. Additionally, the experiments involving runtime
measurements are highly desired to make judgement on the quality of the analysis results.

6.2.2 Evaluation with Avionics OEP applications

The experiments of tool chain integration using Avionics were carried out to evaluate and demonstrate
the integrability of AIRES tool. In this evaluation, we used software models of Avionics Weapon
Systems provided by the Avionics OEP. The OEP had constructed a set of experiment scenarios for
such experiments, covering both product scenarios and development scenarios. A product scenario
outlines the working aspects and complexity of the system. For example, a basic SP product scenario
delt with one or two system threads/transactions running on a single processor with the same rates.
A multirate MP scenario was a more complicated system with threads running at multiple rate on
multiple processors. A development scenario, on the other hand, defined the development process. In
other words, a sequence of steps a design proceeds to construct a system. Avionics OEP defined 11
product scenarios and 10 development scenarios for MoBIES program experiments. We participated in
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period | execution | response # context
task (ms) | time (ms) | time (ms) | utilization switch | priority | processor
V2V.radioDriver 29.5 0.07 4.926 0.002 16 10 P1
V2V.canfix 20 0.001 0.007 0 0 29 P1
V2V.TL 150108 0 4.926 0 16 10 P1
V2V.DL 1953.9 0.065 4.926 0 16 10 P1
V2V.atmiol6 21 0.139 0.591 0.007 6 19 P1
V2V.nodelrw 21 0.083 4.926 0.004 16 10 P1
V2V.atmioe 2 0.114 0.616 0.057 6 19 P1
V2V.canread 7.7 0.104 4.926 0.014 16 10 P1
V2V.hmi 200 0.062 4.926 0 16 10 P1
V2V.cani 10000 0 0.083 0 1 25 P1
V2V.NL 75160 1 4.686 0 16 10 P1
V2V .regulation 21 0.159 4.926 0.008 16 10 P1
V2V.canbrake 8 0.001 0.083 0 1 25 P1
V2V.veh_lat 2 0.074 4.926 0.037 16 10 P1
V2V.pctiol0 21 0.107 0.616 0.005 6 19 P1
V2V.db_slv 1.5 0.037 0.047 0.025 1 25 P1
V2V.button 30 0.024 0.07 0.001 5 20 P1
V2V.veh_iols 21 0.345 4.926 0.016 16 10 P1
V2V.path101 21 0.047 0.616 0.002 6 19 P1
V2V.cansteer 4 0.001 0.083 0 1 25 P1
V2V.moblong 21 0.76 4.926 0.036 16 10 P1
V2V.supervisor 21 0.101 4.926 0.005 16 10 P1
V2V.nodelrd 21 0.262 4.926 0.012 16 10 P1

Table 6.10: Analysis results of V2V tasks on P1 using user-defined priorities.

8 of them that are related to the event and timing modeling and analysis, as shown in Table 6.16.

The size of the model used in each product scenario was different. The basic scenario contained fewer
than 50 components. The medium scenario contained around 90 components. And the representative
was the largest model, contained around 4000 components.

In the evaluation, the AIRES tool was used as an analysis tool in the tool chain integration. There
were two integrated tool chains in the evaluation: one (VU/MI-chain) consisting of Rational Rose
translator from Teknowledge, modeling environment from Vanderbilt, the ATRES tool from University
of Michigan, and the IIF2AIF translator from Southwest Research Institute; another (H/MI-chain)
consisting of the DOME tool from Honeywell and the AIRES tool. Since the tool chain with DOME
was performed by the OEP, we only present the results of the experimental results in this report.

The process flow of the experiments is shown in Figure 6.16. The initial models from the OEP
were constructed in Rational Rose. These models were converted into GME modeling environment in
ESML, and were used as component libraries for the application model construction. The application
models were constructed in GME and were exported to AIF format. The AIRES tool took AIF files as
input, analyzing the model, and updating the AIF file with the analysis results. The required runtime
information were provided by OEP and measured on real target platforms. The raw data was fed to
ATF file using SwRI tool.

The tools used in the experiments are listed in Table 6.17.
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period | execution | response # context
task (ms) | time (ms) | time (ms) | utilization switch | priority | processor
V2V.db_slvy 6.4 0.005 0.011 0.001 0 25 P2
V2V.evt300 65.356 0.055 0.215 0.001 1 10 P2
V2V.hi 21 0.007 0.223 0 1 10 P2
V2V.node2rd 21 0.042 0.223 0.002 1 10 P2
V2V.node2wr 21 0.006 0.223 0 1 10 P2
V2V.veh_iomb 5000 0.047 0.223 0 1 10 P2

Table 6.11: Analysis results of V2V tasks on P2 using user-defined priorities.

One important tool performance metric of the Avionics design tool was scalability. We used the com-
putation times to complete an interested analysis as the measure of the scalability. In these experiments,
we only recorded the times when the AIF file loading starts until the analysis results are generated.
As can be seen from the AIRES for Avionics implementation in Chapter 5, the analyses except the
automatic rate and processor allocations have been completed. So the measured times represented the
computation times of the analysis. In general, the whole analysis process involved large portions of
human interaction, and the times for all aspects of analysis, including translating the model to AIF,
annotating execution times from IIF file, performing analyses, reviewing results, and updating the AIF,
took between 10 ~ 30 minutes. Table 6.18 shows the times of analysis in the experiments.

From the measured computation times, the analysis algorithm demonstrated reasonable good scal-
ability. As the number of components increased from 6 ~ 25 times, the analysis computation times
increased only 3 ~ 6 times for both event analysis and timing analysis algorithms. The execution times
of the algorithm increased linearly as the component number increases exponentially. This indicates
good scalability of the analysis algorithm. Note that the computation times of the analysis algorithm
depended not only on the number of components in the graph, but also the links. This was reflected in
the measured times for exp3.3-3.2, which contained fewer components but with a longer computation
time.

The evaluation of the automatic rate and component assignment algorithm was also evalauted in
a similarly way — by recording the number of components in the system, the number of components
allocated, and time to complete the reallocation. We recorded the times to update AIF after the analysis
in this experiment since AIF updates were essential to reflect the changes in the modeling environment.
Table 6.19 shows the results in this experiment. In this set of experiments, there were only 2 processors.
The number given in the parenthesis shows (# of component on P1, # of components on P2).

As can be seen from the results of the automatic assignment experiment, the time for the algorithm
was almost constant as the components increased significantly. The computation time also depended on
the number of components re-allocated. On contract, the time to update AIF file increased significantly
as the number of components in the model increased.

The effectiveness of AIRES tool was evalauted using the number of error detected in the model.
Table 6.20 shows the results of errors detected by the AIRES tool. The results showed that we detected
errors in the models with designed errors. We also detected some errors that were constructed by
designer’s mistakes. For example, the representative SP scenario was designed such that it should not
have any frameoverrun, but 4 overruns were found after using the IIF data. On the other hand, the
frame overrun should exist in the frameoverrun scenario, but no such a case was found with the measured
ITF data.

Besides the evaluation of ATRES tool alone, our OEP performed the integrated tool chain and com-
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name global local | computation relative period work
priority priority time (us) | deadline (ms) (ms) (ms)

db_slv 1500 1500 37 1500 Det:(1500) Det:(37)
atmioe 2000 2000 225 2000 Det:(2000) | Det:(114)
veh_lat 2000 2000 225 2000 Det:(2000) Det:(74)
cansteer 4000 4000 226 4000 Det:(4000) Det:(1)
canread 7700 7700 330 7700 Det:(7700) | Det:(104)
canbrake 8000 8000 331 8000 Det:(8000) Det:(1)
canfix 20000 20000 332 20000 Det:(20000) Det:(1)
atmiol6 21000 21000 2560 21000 Det:(21000) | Det:(139)
moblong 21000 21000 2560 21000 Det:(21000) | Det:(760)
nodelrd 21000 21000 2560 21000 Det:(21000) | Det:(262)
nodelwr 21000 21000 2560 21000 Det:(21000) |  Det:(83)
path101 21000 21000 2560 21000 Det:(21000) Det:(47)
pctiol0 21000 21000 2560 21000 Det:(21000) | Det:(107)
regulation 21000 21000 2560 21000 Det:(21000) | Det:(159)
supervisor 21000 21000 2560 21000 Det:(21000) | Det:(101)
veh_iols 21000 21000 2560 21000 Det:(21000) | Det:(345)
radiodriver 29500 29500 2630 29500 Det:(29500) Det:(70)
button 30000 30000 2654 30000 Det:(30000) |  Det:(24)
hmi 200000 200000 2716 200000 Det:(200000) Det:(62)
cani 1000000 1000000 2717 1000000 Det:(1000000) Det:(1)
DL 1953900 1953900 2782 1953900 Det:(1953900) Det:(65)
NL 751610000 | 751610000 3819 751610000 | Det:(751610000) | Det:(1000)
TL 150108000 | 150108000 3820 150108000 | Det:(150108000) Det:(1)

Table 6.12: RapidRMA analysis results of V2V tasks on P1 using RMS.

pared both the VU-chain and the H-chain with the baseline tool chain used in current development.
The results showed that both the VU/MI-chain and the H/MI-chain detected some errors that would
not be found in the baseline. Particularly, for medium MP scenario, H/MI-chain resulted in 6 times
savings in time to find and fix errors. For the representative SP scenario, VU/MI-chain resulted in 11.5
times savings in time to find and fix errors. A 2 ~ 6 times overall savings in time were observed. Specif-
ically for AIRES tool, the modal and medium MP scenarios were examined. The times for detection of
inconsistencies are presented in Table 6.21. As can be seen, the dramatic productivity improvement in
integration process was achieved.
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name global local | computation relative period work

priority | priority time (us) | deadline (ms) (ms) (ms)

dbslv 6400 6400 5 6400 Det:(6400) | Det:(5)

hi 21000 21000 60 21000 Det:(21000) | Det:(7)

node2rd | 21000 | 21000 60 21000 | Det:(21000) | Det:(42)

node2wr 21000 21000 60 21000 Det:(21000) | Det:(6)

evt300 65356 65356 115 65356 Det:(65356) | Det:(55)

veh_iomb | 5000000 | 5000000 162 5000000 | Det:(5000000) | Det:(47)

Table 6.13: RapidRMA analysis results of V2V tasks on P2 using RMS.

name global local | computation relative period work
priority | priority time (us) | deadline (ms) (ms) (ms)
canfix 1 1 1 20000 Det:(20000) Det:(1)
canbrake 6 6 41 8000 Det:(8000) Det:(1)
cani 6 6 41 1000000 |  Det:(1000000) Det:(1)
cansteer 6 6 41 4000 Det:(4000) Det:(1)
db_slv 6 6 41 1500 Det:(1500) | Det:(37)
atmiol6 8 8 448 21000 Det:(21000) | Det:(139)
atmioe 8 8 448 2000 Det:(2000) | Det:(114)
path101 8 8 448 21000 Det:(21000) Det:(47)
pctiol0 8 8 448 21000 Det:(21000) | Det:(107)
button 10 10 3746 30000 Det:(30000) | Det:(24)
canread 10 10 3746 7700 Det:(7700) | Det:(104)
DL 10 10 3746 1953900 |  Det:(1953900) |  Det:(65)
hmi 10 10 3746 200000 Det:(200000) Det:(62)
moblong 10 10 3746 21000 Det:(21000) | Det:(760)
NL 10 10 3746 751610000 | Det:(751610000) | Det:(1000)
nodelrd 10 10 3746 21000 Det:(21000) | Det:(262)
nodelwr 10 10 3746 21000 Det:(21000) | Det:(83)
radiodriver 10 10 3746 29500 Det:(29500) Det:(70)
regulation 10 10 3746 21000 Det:(21000) | Det:(159)
supervisor 10 10 3746 21000 Det:(21000) | Det:(101)
TL 10 10 3746 150108000 | Det:(150108000) Det:(1)
veh_iols 10 10 3746 21000 Det:(21000) | Det:(345)
veh_lat 10 10 3595 2000 Det:(2000) Det:(74)

Table 6.14: RapidRMA analysis results of V2V tasks on P1 using user-defined priorities.
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name global local | computation relative period work
priority | priority time (us) | deadline (ms) (ms) (ms)

db_slv 6 6 5 6400 Det:(6400) | Det:(5)
evt300 10 10 162 65356 |  Det:(65356) | Det:(55)
hi 10 10 162 21000 Det:(21000) Det:(7)
node2rd 10 10 162 21000 |  Det:(21000) | Det:(42)
node2wr 10 10 162 21000 Det:(21000) | Det:(6)
veh_iomb 10 10 162 5000000 | Det:(5000000) | Det:(47)

Table 6.15: RapidRMA analysis results of V2V tasks on P2 using user-defined priorities.

experiment | product scenario development scenario

exp2.2-1.0 | PS 1.10: error scenario SP | DS 2.2: basic SP event analysis
exp2.2-2.1 | PS 2.1: representative SP | DS 2.2: basic SP event analysis
exp2-3.4 PS 3.4: medium MP DS 2: full event analysis

exp2-4.1 PS 3.5: error scenario MP | DS 2: full event analysis
exp3.2-1.9 | PS 1.9: frame overrun SP | DS 3.2: SP timing analysis
exp3.2-2.1 | PS 2.1: representative SP | DS 3.2: SP timing analysis
exp3.3-3.2 | PS 3.2: multirate MP DS 3.3: basic MP timing analysis
exp3-3.4 PS 3.4: medium MP DS 3: full timing analysis

Table 6.16: Experiments used in AIRES evalaution.
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Figure 6.16: Work flow and participant tools in the integration tool chian.
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tool version

GME 3 | r3.3.28

ESML release 04-11-03
AIF vl.5

ATRES | v2.1

IIF2AIF | v1.3

WOTIF | v1.2.3

Table 6.17: Tools in integration tool chain.

event analysis ‘ timing analysis
exp2.2 exp2.2 exp2 exp2 exp3d.2 exp3d.2 exp3d.3 expd
-1.10 -21 -34  -41 -1.9 -2.1 -3.2  -34
# of component 15 373 90 15 81 373 7 90
time (in sec) 2 12 6 3 3 14 5 6
Table 6.18: Computation time of analysis.
experiment # components # of components time for time to

+ allocation algorithm

original allocation

after reallocation

reassignment (sec)

update AIF (sec)

MediumMP /first-fit
MediumMP /best-fig
Representative/first-fit
Representative/best-fit

(48, 42)
(48, 42)
(373,0)
(373, 0)

(0, 90)
(48, 42)
(0, 373)
(183,190)

2

1
1
2

4
4
40
28

Table 6.19: Computation times for automatic component assignments.

scenario event /invocation cycles no consumer/publisher frame overrun
ErrorSP 1 1 0
RepresentativeSP 0 3 4
MediumMP 0 7 0
ErrorMP 1 1 0
Frame overrun 0 21 0
MultirateMP 0 1 0

Table 6.20: Errors detected by AIRES in the experiments.

scenario | baseline VU/MI H/MI
Modal 18 4 7
Medium 45 4 8

Table 6.21: Time for finding and fix inconsistencies using different tool chains.
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Chapter 7

Conclusions and Future Work

In this project, we have developed an approach to integrating non-functional system analyses with
model-based embedded system software design. The approach we took has combined the meta-modeling
techniques, model-based timing and schedualibity analysis, model transformation and design automa-
tion. A model-based analysis toolkit — called the AIRES toolkit — has been implemented. The
AIRES toolkit includes the meta-models with non-functional information specifications required by
analysis, a set of analysis algorithms for model transformation, functional integration analysis, and
timing and schedulability analyses. To ensure the completion of system specification and improve the
design/development process, the AIRES toolkit was also implemented with a built-in system analysis
process. The process enforces the designer to follow certain steps to perform the analysis, and at each
step, a set of minimum system properties must be specified before the analysis can proceed.

To work with the model properties and analysis requirements of different domains, the AIRES tool
was tailored to both the avionics and automotive OEPs. Specifically, the AIRES tool for the automotive
OEP was implemented using GME as a graphic modeling environment with the designed meta-model
and analysis algorithms implemented as interpreters. The tool itself represents an integration tool chain
used at different design phases for analysis. We adopted the model translator as a means of integration
with models constructed using other tools. In contrast, the AIRES tool for the avionics OEP was
implemented as a standalone program using a common file format to exchange models among tools in
the tool chain. Both approaches met the objectives of integrating different tools. The approach for the
automotive ATRES tool helps perform a richer set of analyses as the modeling information are fully
available. However, the algorithm may take a longer time to extract the information required for a
certain analysis. The approach for the avionics OEP showed a better performance, but with a cost of
modeling information loss.

The evaluations of the AIRES techniques and tool using experiments from both the avionics and
automotive domains have demonstrated that the techniques were adequate for such types of embed-
ded applications. It provided useful information to accelerate the design process as well as improve
the software quality. The evaluations of individual algorithms using randomly-generated simulation
systems showed that the algorithms are of polynormial time with the generated solutions close to the
optimal ones. This indicates that the algorithms are suitable for large applications subject to stringent
constraints. The evaluations with both avionics and automotive applications showed that the AIRES
tool provides useful information on design to satisfy the constraints and contribute to 4 ~ 10 times
savings of development time. It was also shown that more errors were found by the tool than by human
designers. The measurement method used with the AIRES tool provided an efficient way of measuring
the underlying systems, therefore resulting in more realistic analysis.
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We learned several important lessons through this project. First, the design of meta-model has
profound impacts on the design and implementation of analysis algorithms. The meta-model defines
what analysis-related information is required and in what format. Completing the meta-model and
keeping it stable is of the utmost importance for analysis tool implementation and integration. Second,
it is possible to automatically refine the initial design to meet the non-functional constraints without
human interactions. To achieve this, the quality of service specifications are essential. The quality
of the refinment that a tool can achieve depends on the given QoS specifications. The relationships
between the specification and the quality of automatically-generated results need further investigation
Third, the software architecture, runtime model, and component structure used in the model also have
dramatic impacts on the analysis tool implementation and the quality of analysis results. For example,
a main factor that the ATRES tool has to be tailored for avionics and automotive applications differently
was because the avionics applications use object-oriented models to model components’ structure, and
use a CORBA middlware-based publish/subscribe for event communications and facet/receptacle for
invocations. On the other hand, the components in automotive applications are mainly processing
functions, and the software architecture is modeled as data/control flow diagrams. Knowledge of this
modeling information and design patterns can help us develop a tool with more efficient algorithms and
better integrability.

We believe that AIRES fills a gap in the current software development practice, which relies heavily on
time-consuming and expensive testing on the target platform, as it provides insight into non-functional
aspects of models at design-level, and helps the engineer make high-level design decisions that have
a large impact on the embedded software. It is complementary to tools in a typical IDE (Integrated
Development Environment) that works at the code level, such as compilers, debuggers, runtime tracers
and automated testers. As the model-based approach is becoming more mainstream, as evidenced by
the Model-Driven Architecture initiative [27] and the number of tool vendors in the embedded real-time
domain that claim to support it, analysis tools like AIRES that work at the model-level will become
more prevalent. The tool is continuously being improved in collaboration with our industry partners,
and is available for download at http://kabru.eecs.umich.edu/aires.

We are currently extending the tool in several directions. First, we plan to add more functionalities,
especially analysis with real-time network communication. Second, we are collaborating with researchers
from other institutes and industries to achieve more seamless integration of ATRES into the end-to-end
tool-chain, including feedback of analysis results into the different modeling tools. Third, our timing and
schedulability algorithms in the AIRES tool would be conceivable or preferable to interface with mature
commercial tools such as TimeWiz [29]. One possible issue with this approach is that commercial tools
often have closed and proprietary input/output formats, or does not provide necessary runtime hooks,
which may hinder seamless integration within the tool-chain. Last, it will be more valuable to investigate
the benefit and improvement our analysis can provide by comparing the design time analysisy results
with the runtime measurements of the final executable system. From such a comparison, we can learn
the accuracy of the analysis results of the ATIRES tool.
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